

US 20110095276A1

(19) **United States**

(12) **Patent Application Publication**

Imai et al.

(10) **Pub. No.: US 2011/0095276 A1**

(43) **Pub. Date: Apr. 28, 2011**

(54) **DISPLAY UNIT**

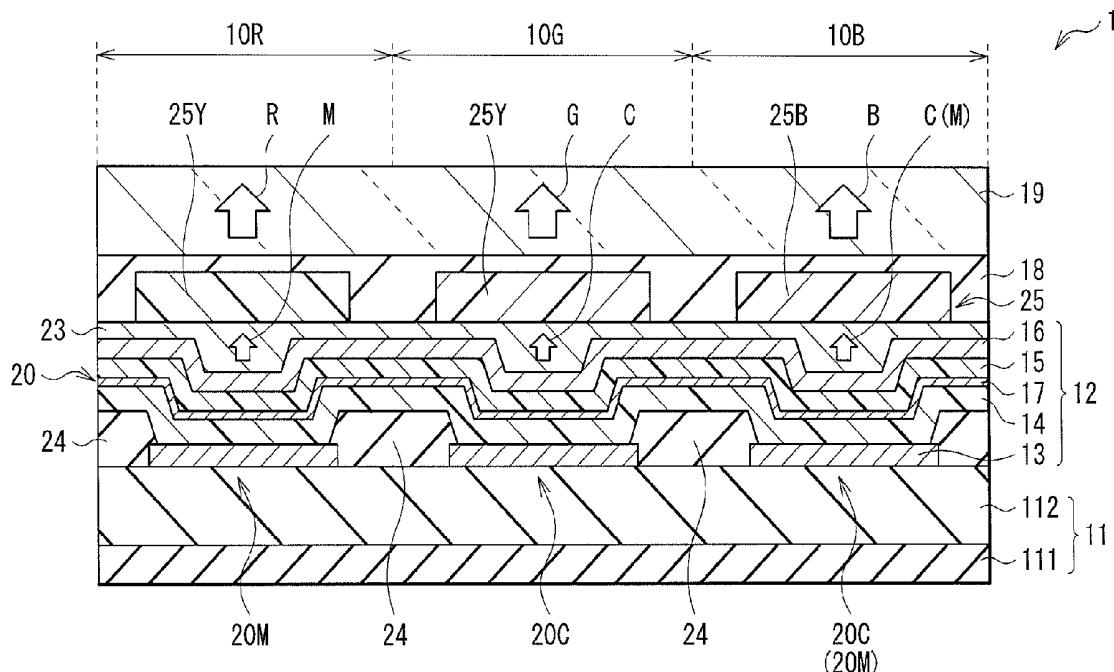
Publication Classification

(75) Inventors: **Toshiaki Imai**, Kanagawa (JP);
Shigeyuki Matsunami, Fukuoka (JP); **Yasunori Kijima**, Tokyo (JP)

(51) **Int. Cl.**
H01L 51/50 (2006.01)
H01L 33/08 (2010.01)
(52) **U.S. Cl.** **257/40**; 257/89; 257/E51.018;
257/E33.001

(73) Assignee: **SONY CORPORATION**, Tokyo (JP)

(57) **ABSTRACT**


(21) Appl. No.: **12/899,133**

(22) Filed: **Oct. 6, 2010**

(30) **Foreign Application Priority Data**

Oct. 22, 2009 (JP) P2009-243689

A display unit that secures favorable display performance and has a simple structure is provided. The display unit includes a multilayer structure in which an organic light emitting device group respectively having a plurality of organic light emitting devices that emits cyan light and a plurality of organic light emitting devices that emits magenta light and a color filter group having a plurality of blue filters that transmit blue light and a plurality of yellow filters that transmit yellow light are sequentially layered. In the display unit, the cyan light and the magenta light entering from the organic light emitting device group to the color filter group is converted to blue light by the blue filter, and is respectively converted to green light and red light by the yellow filter. Therefore, compared to a case that the organic light emitting device group emits white light, color separation is more facilitated.

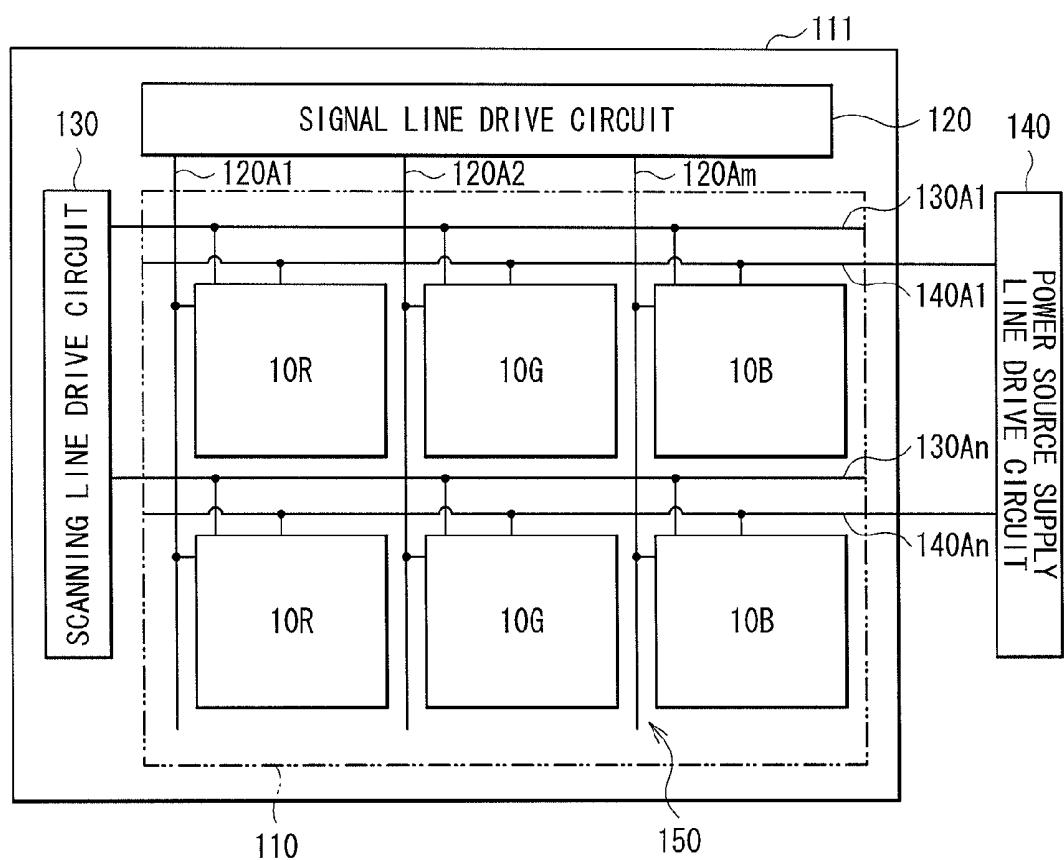


FIG. 1

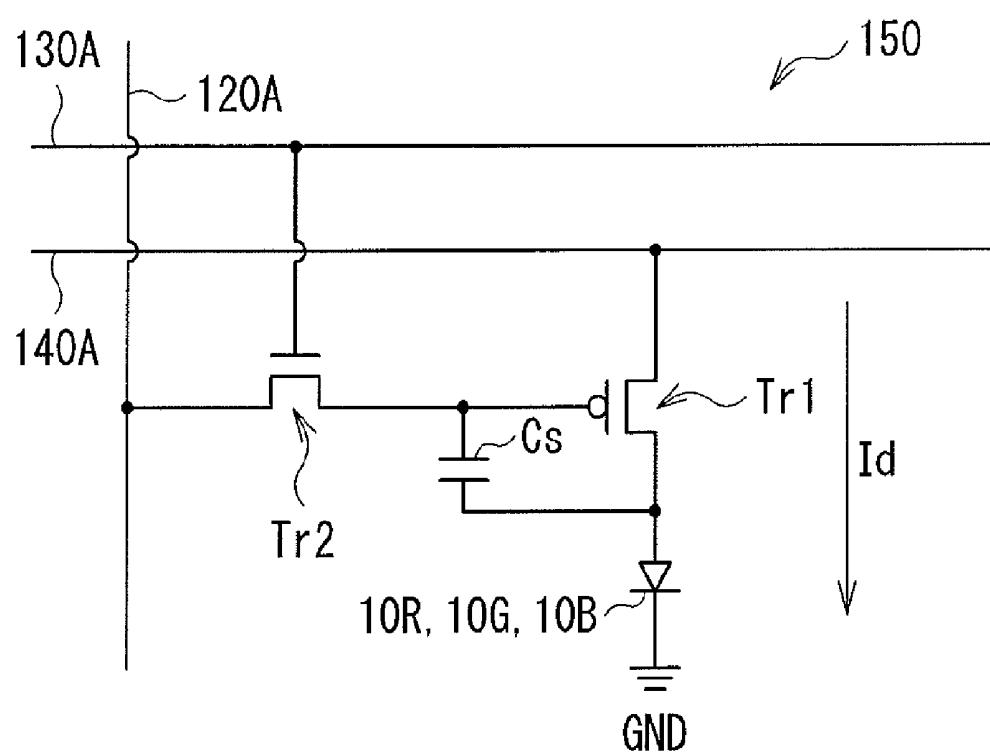


FIG. 2

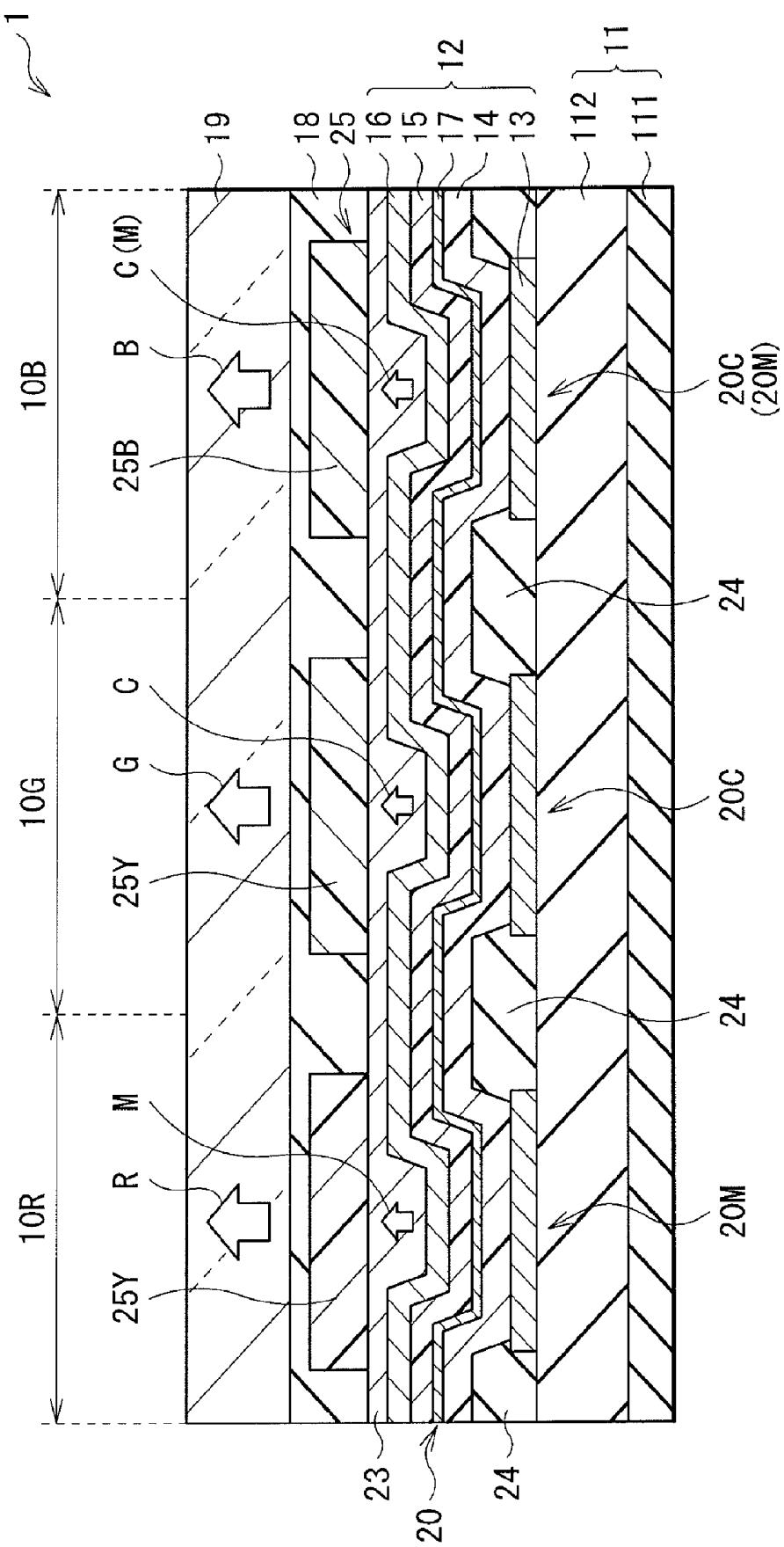


FIG. 3

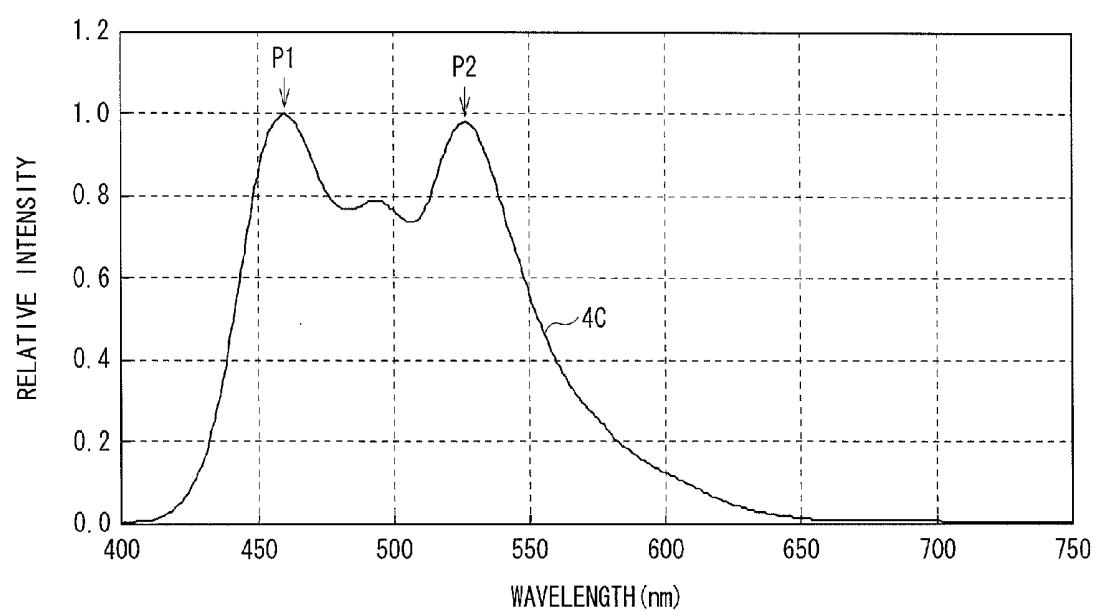


FIG. 4

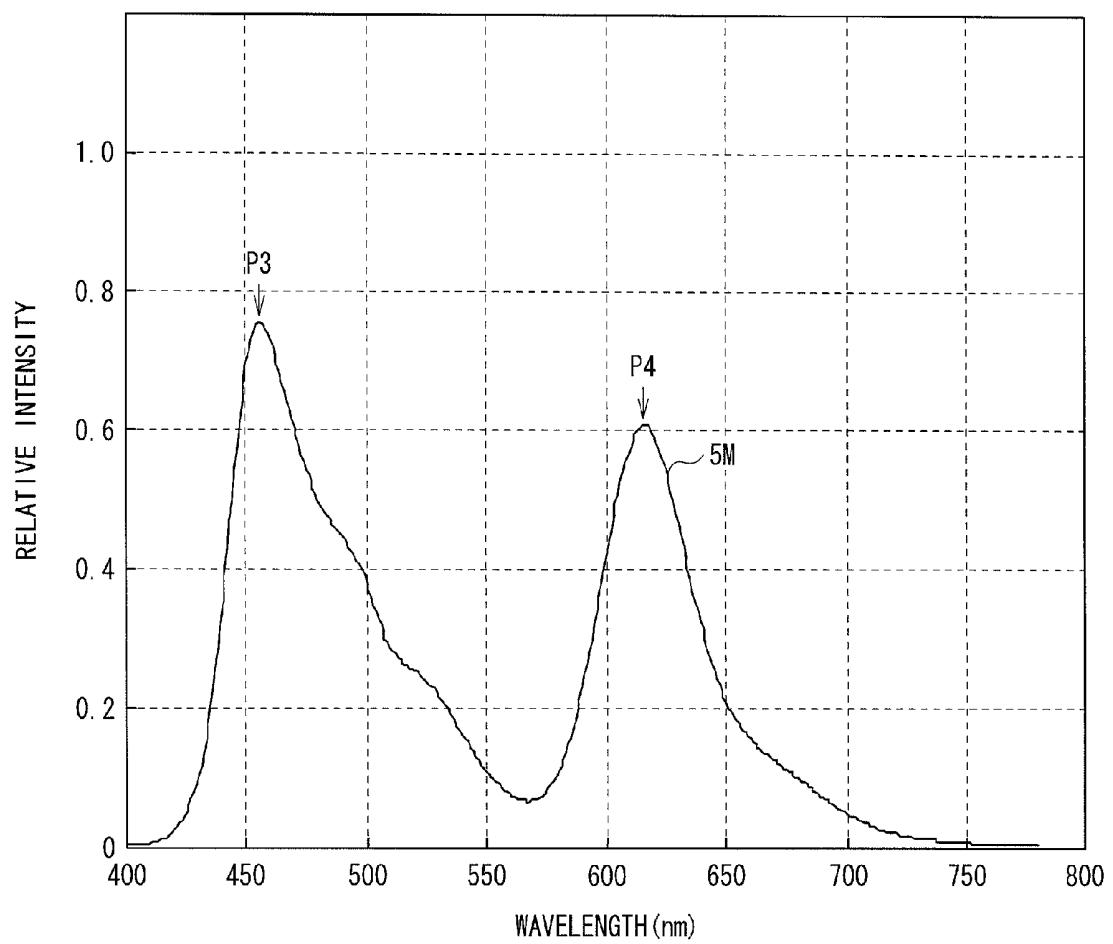


FIG. 5

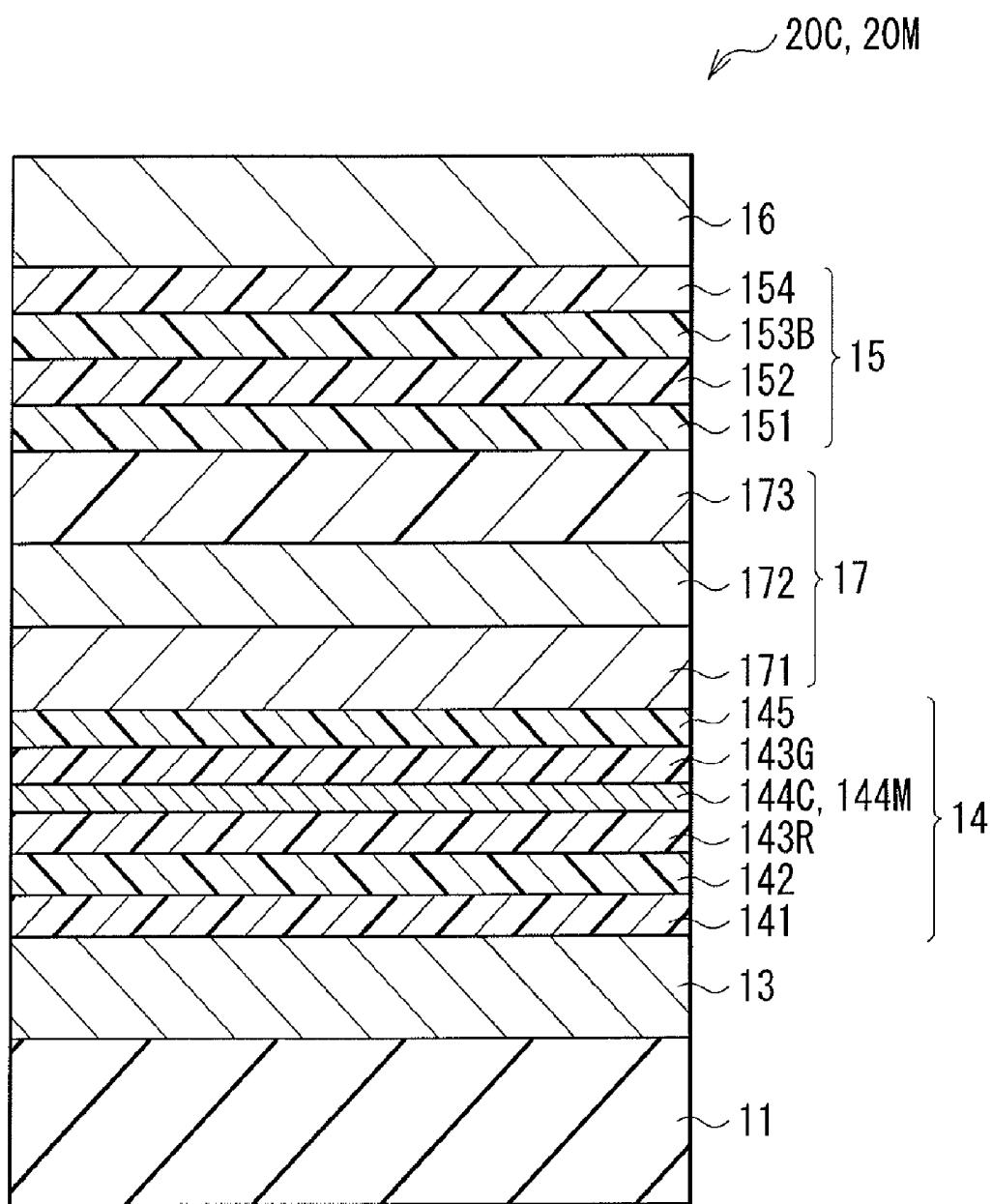


FIG. 6

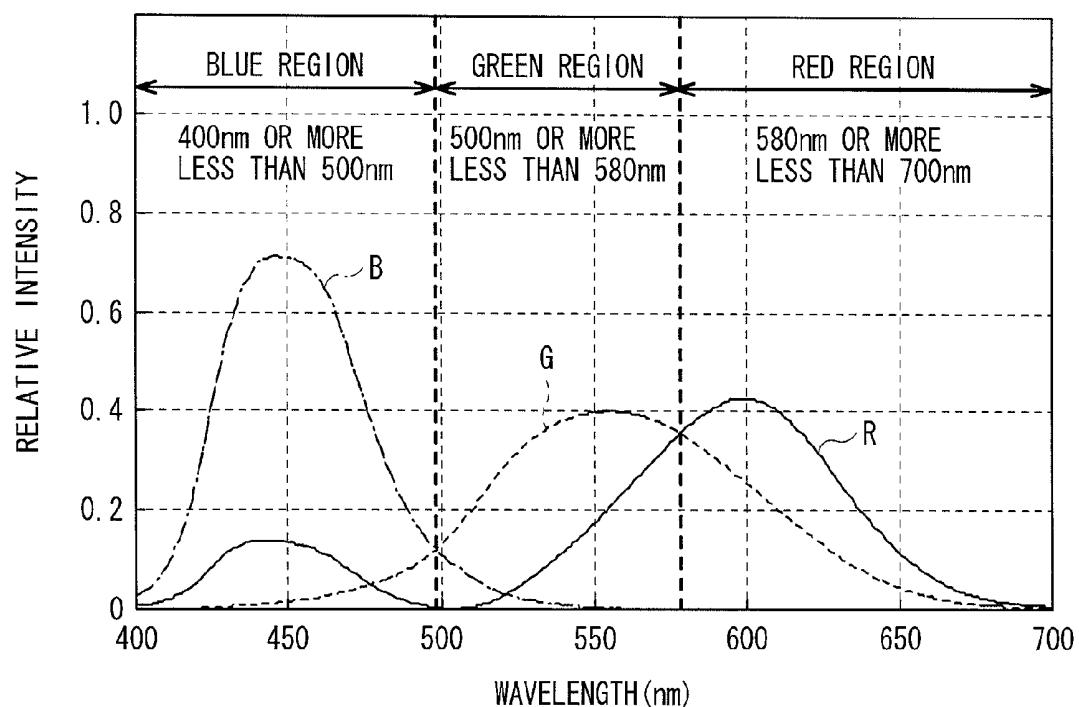


FIG. 7

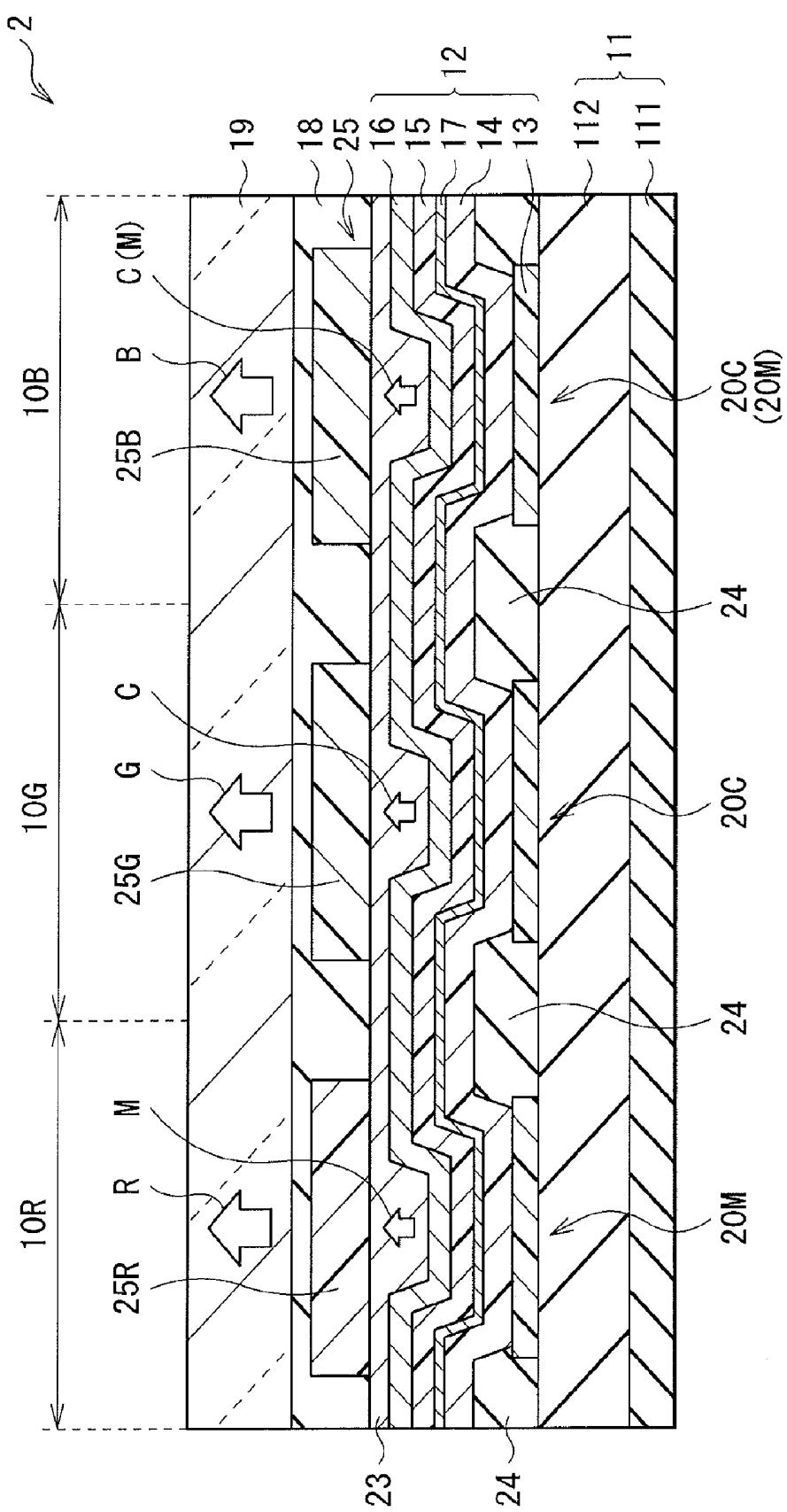


FIG. 8

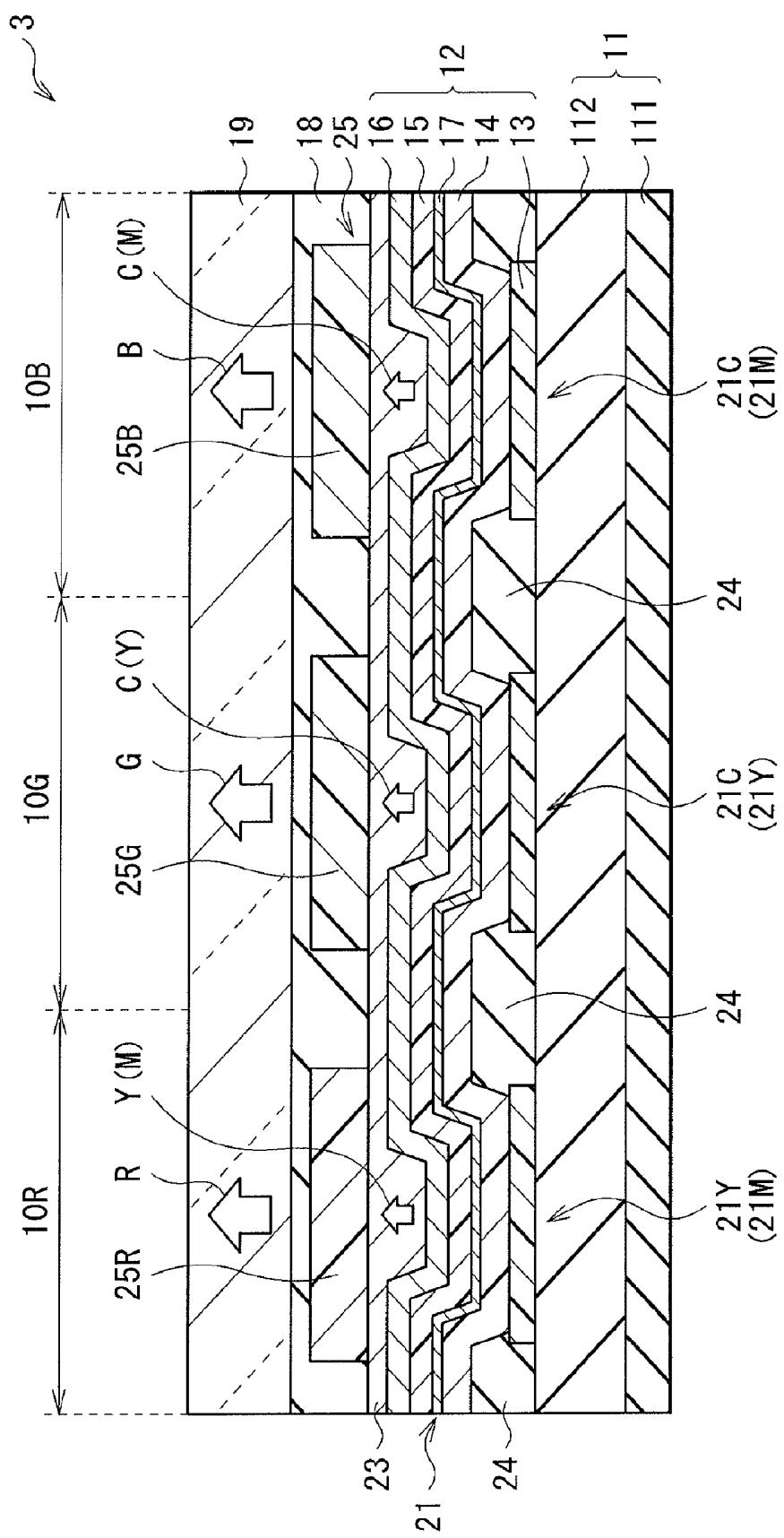


FIG. 9

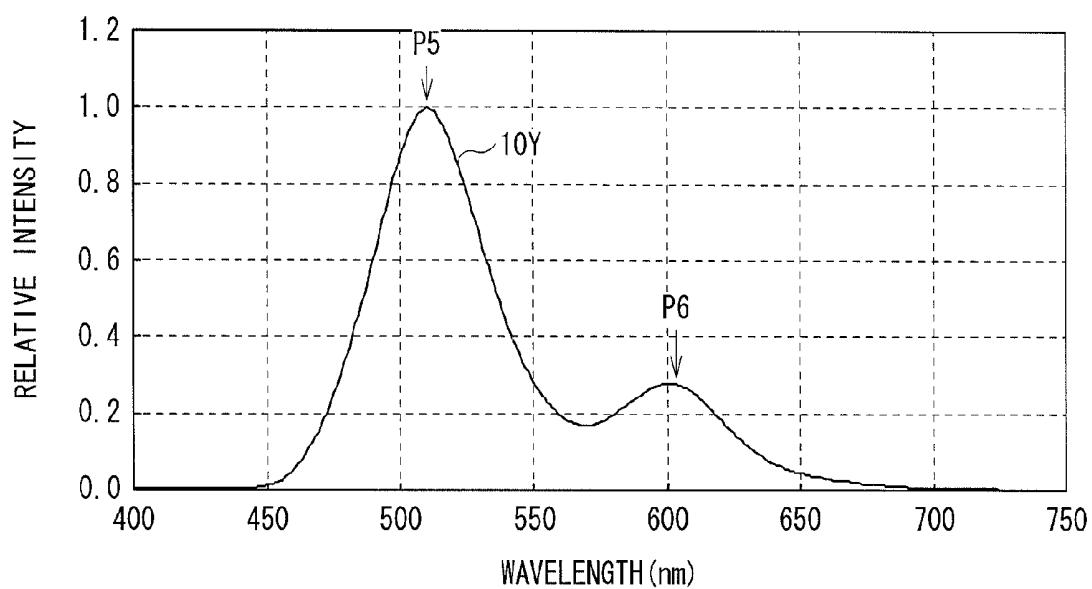


FIG. 10

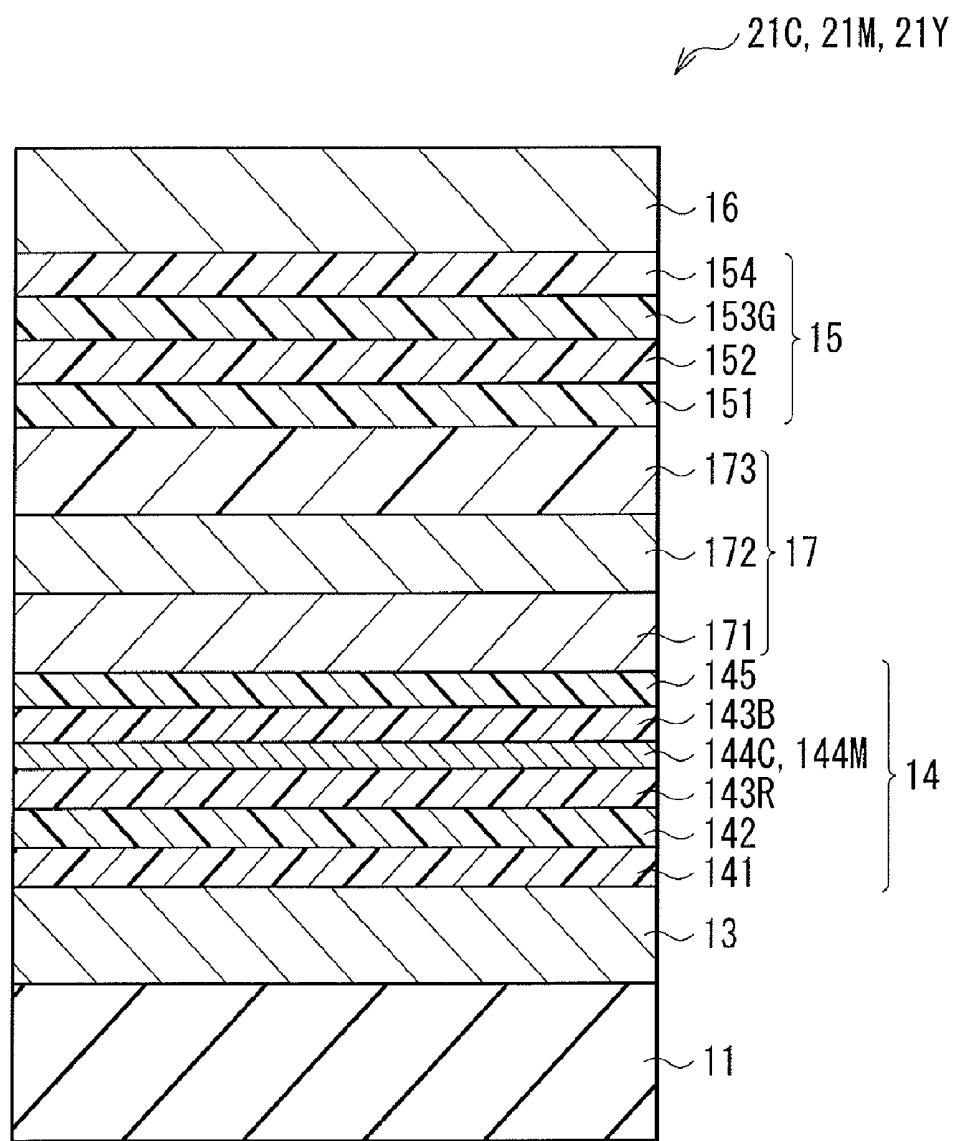


FIG. 11

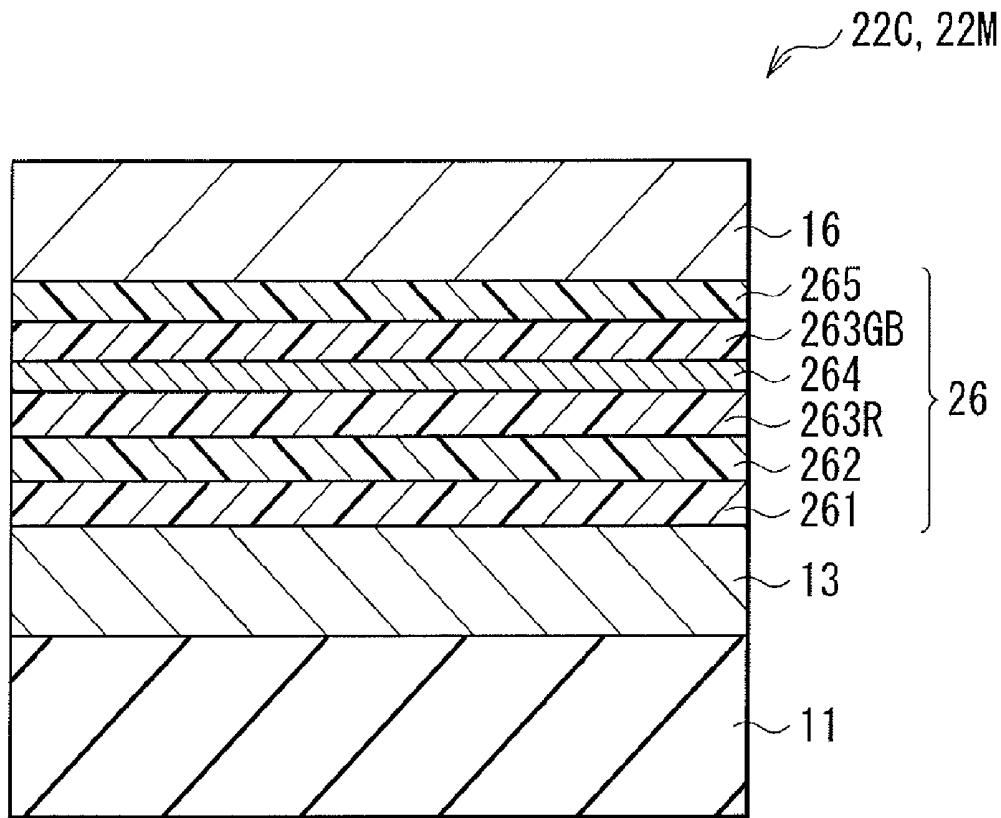


FIG. 12

DISPLAY UNIT

CROSS REFERENCES TO RELATED APPLICATIONS

[0001] The present application claims priority to Japanese Priority Patent Application JP 2009-243689 filed in the Japan Patent Office on Oct. 22, 2009, the entire content of which is hereby incorporated by reference.

BACKGROUND

[0002] The present application relates to a display unit that includes a self-light emitting type organic light emitting device.

[0003] In recent years, as a display unit replacing a liquid crystal display, an organic EL (Electro Luminescence) display unit using a self-light emitting type organic EL device including an organic layer has been practically used. Since the organic EL display unit is a self-light emitting type display unit, its view angle is wider than that of the liquid crystal display unit or the like. Further, the organic EL display unit has sufficient response to a high-definition and high-speed video signal.

[0004] As one of such organic EL display units, an organic EL display that has a combination structure of an organic light emitting device that emits white light (hereinafter referred to as a white light emitting device) and a color filter has been known. By adopting such a structure, a full color display unit is able to be comparatively easily fabricated without separately forming each organic light emitting device that emits each color, that is, without performing fine separate coating operation using a metal mask in forming a light emitting layer.

[0005] The white light emitting device has a structure in which, for example, two light emitting layers are layered in one light emitting unit sandwiched between an anode and a cathode, the two light emitting layers simultaneously emit light, and therefore white light emission is extracted as a whole.

[0006] Other examples of the white light emitting device include a so-called tandem type light emitting device in which a plurality of light emitting units are layered between a cathode and an anode with a charge generation layer in between (for example, refer to Japanese Unexamined Patent Application Publication No. 2006-324016). In the tandem type light emitting device, the plurality of light emitting units respectively having one or more light emitting layers are included. Whole light emitting color becomes white by overlapping respective light emitting colors from the respective light emitting units each other.

SUMMARY

[0007] In the display unit including the white light emitting device disclosed in the foregoing Japanese Unexamined Patent Application Publication No. 2006-324016, low voltage drive is enabled, and superior performance with favorably controlled light emitting balance is demonstrated. However, in the combination of the white light emitting device and the color filter, sufficient color separation is not performed without increasing the thickness of the color filter to some extent. In recent years, further improving light emitting efficiency and improving compact characteristics have been increasingly demanded. However, it becomes increasingly difficult to sufficiently satisfy such a demand with the use of the

display unit of the foregoing Japanese Unexamined Patent Application Publication No. 2006-324016. Thus, a display unit that has a compact structure and that has high light emitting efficiency has been desired.

[0008] In view of the foregoing, in the application, it is desirable to provide a display unit that secures favorable display performance and has a simpler structure.

[0009] According to an embodiment, there is provided a display unit including a multilayer structure in which a light emitting device group that respectively has a plurality of cyan organic light emitting devices emitting cyan light and a plurality of magenta organic light emitting devices emitting magenta light and a color filter group that has a plurality of blue filters transmitting blue light and a plurality of yellow filters transmitting yellow light are sequentially layered over a substrate.

[0010] In the display unit of the embodiment, the cyan light and the magenta light are emitted from the light emitting device group, and the cyan light and the magenta light entering the color filter group is both converted to the blue light by the blue filter and is respectively converted to green light and red light by the yellow filter. Therefore, compared to a case that the light emitting device group emits white light, color separation is favorably performed even if the thickness of the color filter group is decreased.

[0011] According to another embodiment, there is provided a display unit including a multilayer structure in which a light emitting device group that respectively has a plurality of cyan organic light emitting devices emitting cyan light and a plurality of magenta organic light emitting devices emitting magenta light and a color filter group that has a plurality of red filters transmitting red light, a plurality of green filters transmitting green light, and a plurality of blue filters transmitting blue light are sequentially layered over a substrate.

[0012] In the display unit of the embodiment, the cyan light and the magenta light is emitted from the light emitting device group, and the cyan light and the magenta light enters the color filter group. The cyan light is converted to the blue light by the blue filter, or is converted to the green light by the green filter. Meanwhile, the magenta light is converted to the blue light by the blue filter, or is converted to the red light by the red filter. Therefore, compared to a case that the light emitting device group emits white light, color separation is favorably performed even if the thickness of the color filter group is decreased.

[0013] According to still another embodiment, there is provided a display unit including a multilayer structure in which a light emitting device group that has at least two of a plurality of cyan organic light emitting devices emitting cyan light, a plurality of magenta organic light emitting devices emitting magenta light, and a plurality of yellow organic light emitting devices emitting yellow light and a color filter group that has a plurality of red filters transmitting red light, a plurality of green filters transmitting green light, and a plurality of blue filters transmitting blue light are sequentially layered over a substrate.

[0014] In the display unit of the embodiment, at least two of the cyan light, the magenta light, and the yellow light is emitted from the light emitting device group, and the emitted light enters the color filter group. The cyan light is converted to the blue light by the blue filter, or is converted to the green light by the green filter. The magenta light is converted to the blue light by the blue filter, or is converted to the red light by the red filter. The yellow light is converted to the green light

by the green filter, or is converted to the red light by the red filter. Therefore, compared to a case that the light emitting device group emits white light, color separation is favorably performed even if the thickness of the color filter group is decreased.

[0015] According to the display unit of the embodiments of the application, the light emitting device group has a plurality of organic light emitting devices that respectively emit the cyan light, the magenta light, or the yellow light. Thus, compared to a case that the light emitting device group emits white light, the thickness of the color filter group is able to be decreased while the color purity is maintained. In the result, the whole light emitting efficiency is improved, and the thickness of the whole structure is able to be decreased.

[0016] Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.

BRIEF DESCRIPTION OF THE FIGURES

[0017] FIG. 1 is a view illustrating a structure of a display unit according to a first embodiment.

[0018] FIG. 2 is a view illustrating an example of the pixel drive circuit illustrated in FIG. 1.

[0019] FIG. 3 is a cross sectional view illustrating a schematic structure of the display device in the display region illustrated in FIG. 1.

[0020] FIG. 4 is a characteristics diagram illustrating an intensity distribution of cyan light.

[0021] FIG. 5 is a characteristics diagram illustrating an intensity distribution of magenta light.

[0022] FIG. 6 is an enlarged cross sectional view illustrating a structure of the organic light emitting device illustrated in FIG. 3.

[0023] FIG. 7 is a characteristics diagram illustrating ideal wavelength intensity distributions of red light, green light, and blue light respectively output from each light emitting layer illustrated in FIG. 6.

[0024] FIG. 8 is a view illustrating a schematic structure of a display device in a display unit according to a second embodiment.

[0025] FIG. 9 is a view illustrating a schematic structure of a display device in a display unit according to a third embodiment.

[0026] FIG. 10 is a characteristics diagram illustrating an intensity distribution of yellow light.

[0027] FIG. 11 is an enlarged cross sectional view illustrating a structure of the organic light emitting device illustrated in FIG. 9.

[0028] FIG. 12 is an enlarged cross sectional view illustrating a structure of an organic light emitting device in a display unit according to a fourth embodiment.

DETAILED DESCRIPTION

[0029] Embodiments of the present application will be described in detail hereinafter with reference to the drawings.

First Embodiment

Whole Structure of a Display Unit

[0030] FIG. 1 is a view illustrating a structure of a display unit using an organic light emitting device according to a first embodiment. The display unit is used as an ultrathin organic light emitting color display unit or the like. In the display unit,

a display region 110 is formed on a substrate 111. Around the display region 110 on the substrate 111, for example, a signal line drive circuit 120, a scanning line drive circuit 130, and a power source supply line drive circuit 140 that are drivers for displaying a video are formed.

[0031] In the display region 110, a plurality of display devices 10 (10R, 10G, and 10B) that are two-dimensionally arranged in a matrix state and a pixel drive circuit 150 for driving the same are formed. In the pixel drive circuit 150, a plurality of signal lines 120A (120A1, 120A2, . . . , 120Am, . . .) are arranged in the column direction, and a plurality of scanning lines 130A (130A1, . . . , 130An, . . .) and a plurality of power source supply lines 140A (140A1, . . . , 140An, . . .) are arranged in the row direction. One of the display devices 10R, 10G, and 10B is provided correspondingly to each intersection of each signal line 120A and each scanning line 130A. Each signal line 120A is connected to the signal line drive circuit 120, and each scanning line 130A is connected to the scanning line drive circuit 130, and each power source supply line 140A is connected to the power source supply line drive circuit 140.

[0032] The signal line drive circuit 120 supplies a signal voltage of a video signal corresponding to luminance information supplied from a signal supply source (not illustrated) to the display devices 10R, 10G, and 10B selected through the signal line 120A.

[0033] The scanning line drive circuit 130 is composed of a shift resistor or the like that sequentially shifts (transfers) a start pulse in synchronization with an input clock pulse. The scanning line drive circuit 130 scans writing of the video signal into the respective display devices 10R, 10G, and 10B in units of row, and sequentially supplies a scanning signal to each scanning line 130A.

[0034] The power source supply line drive circuit 140 is composed of a shift resistor or the like that sequentially shifts (transfers) the start pulse in synchronization with the input clock pulse. The power source supply line drive circuit 140 supplies one of a first electric potential and a second electric potential that are different from each other as appropriate to each power source supply line 140 in synchronization with the scanning in units of row by the scanning line drive circuit 130. Therefore, conduction state or non conduction state of an after-mentioned drive transistor Tr1 is selected.

[0035] The pixel drive circuit 150 is provided in a layer between the substrate 111 and the display device 10 (after-mentioned pixel drive circuit formation layer 112). FIG. 2 is a view illustrating a structural example of the pixel drive circuit 150. As illustrated in FIG. 2, the pixel drive circuit 150 is an active type drive circuit having the drive transistor Tr1, a writing transistor Tr2, a capacitor (retentive capacity) Cs between the drive transistor Tr1 and the writing transistor Tr2, and the display device 10. The display device 10 is serially connected to the drive transistor Tr1 between the power source supply line 140A and a common power source supply line (GND). The drive transistor Tr1 and the writing transistor Tr2 are composed of a general thin film transistor (TFT). The structure thereof is not particularly limited, and may be, for example, inversely staggered structure (so-called bottom gate type) or staggered structure (top gate type).

[0036] For example, a drain electrode of the writing transistor Tr2 is connected to the signal line 120A. The video signal from the signal line drive circuit 120 is supplied to the drain electrode of the writing transistor Tr2. A gate electrode of the writing transistor Tr2 is connected to the scanning line

[130A] The scanning signal from the scanning line drive circuit **130** is supplied to the gate electrode of the writing transistor **Tr2**. Further, a source electrode of the writing transistor **Tr2** is connected to a gate electrode of the drive transistor **Tr1**.
[0037] For example, a drain electrode of the drive transistor **Tr1** is connected to the power source supply line **140A**, and is set to one of the first electric potential and the second electric potential supplied from the power source supply line drive circuit **140**. A source electrode of the drive transistor **Tr1** is connected to the display device **10**.

[0038] The retentive capacity **Cs** is formed between the gate electrode of the drive transistor **Tr1** (source electrode of the writing transistor **Tr2**) and the source electrode of the drive transistor **Tr1**.

[0039] Structure of the Display Region

[0040] In the display region **110**, one display device **10R**, one display device **10G**, and one display device **10B** structure a pixel **1** (described later) as one display unit. In other words, in the display region **110**, the plurality of pixels **1** are sequentially arranged in a matrix state as a whole. The display device **10R** displays red light **R**, the display device **10G** displays green light **G**, and the display device **10B** displays blue light **B**.

[0041] FIG. 3 is a cross sectional view illustrating a schematic structure of a given pixel **1** in the display region **110**. As illustrated in FIG. 3, in the display region **110**, on a base substance **11** in which the pixel drive circuit formation layer **112** is provided on the substrate **111**, a light emitting device formation layer **12** including an organic light emitting device group **20** is formed. On the light emitting device formation layer **12**, a protective layer **18** in which a color filter group **25** is buried and a sealing substrate **19** are sequentially provided.

[0042] The substrate **111** is made of glass, a silicon (Si) wafer, a resin or the like. In the pixel drive circuit formation layer **112**, the pixel drive circuit **150** is formed.

[0043] In the organic light emitting device group **20**, a plurality of organic light emitting devices **20C** that emit cyan light **C** and a plurality of organic light emitting devices **20M** that emit magenta light **M** are respectively arranged on the top face of the base substance **11**. Further, in the color filter group **25**, a plurality of blue filters **25B** that transmit blue light (for example, light from 400 nm to less than 500 nm) and a plurality of yellow filters **25Y** that transmit, for example, 70% or more of yellow light (for example, light from 500 nm to less than 700 nm) are arranged along the bottom face of the sealing substrate **19**. In this case, some yellow filters **25Y** are arranged in a position corresponding to the organic light emitting device **20C** to transmit the cyan light **C**. The other yellow filters **25Y** are arranged in a position corresponding to the organic light emitting device **20M** to transmit the magenta light **M**. Further, the plurality of blue filters **25B** are arranged to transmit at least one of the cyan light **C** from the organic light emitting device **20C** and the magenta light **M** from the organic light emitting device **20M**.

[0044] For example, as illustrated in FIG. 3, the display device **10R** displays the red light **R** by combination of the organic light emitting device **20M** and the yellow filter **25Y**. Similarly, the display device **10G** displays the green light **G** by combination of the organic light emitting device **20C** and the yellow filter **25Y**. The display device **10B** displays the blue light **B** by combination of the organic light emitting device **20C** and the blue filter **25B**, or displays the blue light **B** by combination of the organic light emitting device **20M** and the blue filter **25B**.

[0045] The cyan light **C** is, for example, light having wavelength dependence of intensity indicated by curved line **4C** of FIG. 4. In FIG. 4, the vertical axis represents a relative intensity, and the horizontal axis represents a wavelength [nm]. In other words, the cyan light **C** has first peak **P1** indicating the maximum value in the range from 400 nm to 500 nm both inclusive and second peak **P2** indicating the maximum value in the range from 500 nm to 580 nm both inclusive in the intensity distribution. The first peak **P1** or the second peak **P1** indicates the maximum intensity. The magenta light **M** is, for example, light having wavelength dependability of intensity indicated by curved line **5M** of FIG. 5. In FIG. 5, the vertical axis represents a relative intensity, and the horizontal axis represents a wavelength [nm]. In other words, the magenta light **M** has third peak **P3** indicating the maximum value in the range from 400 nm to 500 nm both inclusive and fourth peak **P4** indicating the maximum value in the range from 600 nm to 700 nm both inclusive in the intensity distribution. The third peak **P3** or the fourth peak **P4** indicates the maximum intensity.

[0046] In the organic light emitting devices **20C** and **20M**, a first electrode layer **13** as an anode, a first organic layer **14**, a connection layer **17**, a second organic layer **15**, and a second electrode layer **16** as a cathode are sequentially layered from the base substance **11** side. The first electrode layer **13** is separated for every display device **10R**, **10G**, and **10B** by a device separation layer **24**. Meanwhile, the first organic layer **14**, the connection layer **17**, the second organic layer **15**, and the second electrode layer **16** are commonly provided for all the display devices **10R**, **10G**, and **10B**. However, a charge control layer **144** (not illustrated in FIG. 3) included in the first organic layer **14** of the organic light emitting device **20C** is made of a material different from that of the charge control layer **144** included in the first organic layer **14** of the organic light emitting device **20M**. Further, the second electrode layer **16** is covered with a protective layer **23**. The top face of the protective layer **23** is planarized. The protective layer **23** is made of an insulating material such as silicon nitride (SiNx). In FIG. 3, detailed structure of the drive transistor **Tr1**, the writing transistor **Tr2** and the like in the pixel drive circuit formation layer **112** are not illustrated.

[0047] The device separation layer **24** is provided to fill in a gap between the respective first electrode layers **13** in adjacent display devices **10**. The device separation layer **24** is made of an organic material having electric insulation properties such as polyimide. The device separation layer **24** secures electric insulation properties between the respective first electrode layers **13**, and accurately determines a desired shape of the light emitting regions of the organic light emitting devices **20C** and **20M**.

[0048] The protective layer **18** covering the light emitting device formation layer **12** is made of an insulating material such as silicon nitride as the protective layer **23** is. Further, the sealing substrate **19** provided thereon seals the display device **10** together with the protective layer **18** and an adhesive layer (not illustrated). The sealing substrate **19** is made of a material such as transparent glass that transmits light generated in the first organic layer **14** and the second organic layer **15**.

[0049] Structure of Organic Light Emitting Device

[0050] Next, a description will be given of detailed structures of the organic light emitting devices **20C** and **20M** with reference to FIG. 6. The organic light emitting devices **20C** and **20M** have common structures except that the structure of each charge control layer **144** included in each first organic

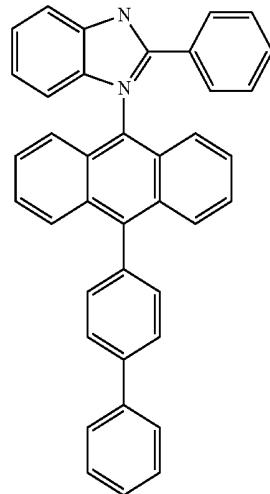
layer **14** is different from each other. Thus, a description will be hereinafter given of the structures thereof collectively.

[0051] The first electrode layer **13** also functions as a reflecting layer. The first electrode layer **13** is desirably made of a material having high reflectance as much as possible in order to improve light emitting efficiency. The first electrode layer **13** has a thickness of, for example, from 100 nm to 1000 nm both inclusive, and is composed of a simple substance or an alloy of metal elements such as silver (Ag), aluminum (Al), chromium (Cr), titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), copper (Cu), tantalum (Ta), tungsten (W), platinum (Pt), neodymium (Nd), and gold (Au). The first electrode layer **13** is formed to cover the base substance **11**, and fill in a connection hole (not illustrated). The first electrode layer **13** is in a state of being conducted to the drive transistor Tr1 through the connection hole.

[0052] As illustrated in FIG. 6, the first organic layer **14** has a multilayer structure in which a hole injection layer **141**, a hole transport layer **142**, a red light emitting layer **143R**, the charge control layer **144** (**144C** and **144M**), a green light emitting layer **143G**, and an electron transport layer **145** are sequentially layered from the first electrode layer **13** side.

[0053] The hole injection layer **141** is intended to improve efficiency to inject hole into the red light emitting layer **143R** and the green light emitting layer **143G**, and function as a buffer layer to prevent current leakage. The hole injection layer **141** is preferably, for example, composed of 4,4',4"-tris(3-methylphenylphenylamino)triphenyl amine (m-MT-DATA) or 4,4',4"-tris(2-naphthylphenylamino)triphenyl amine (2-TNATA), and preferably has a thickness of 10 nm.

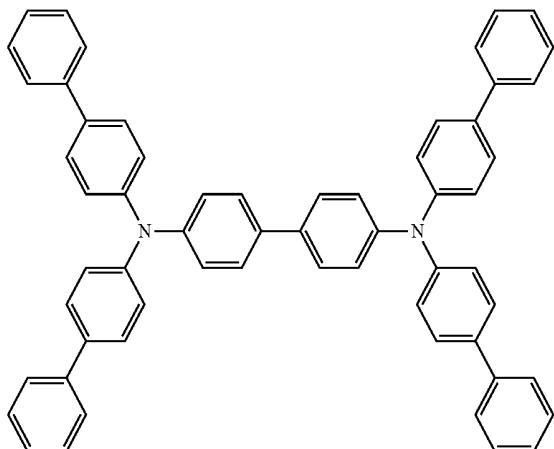
[0054] The hole transport layer **142** is intended to improve efficiency to transport hole to the red light emitting layer **143R** and the green light emitting layer **143G**. The hole transport layer **142** is preferably, for example, composed of bis[(N-naphthyl)-N-phenyl]benzidine (α -NPD), and preferably has a thickness of 10 nm.


[0055] The red light emitting layer **143R** and the green light emitting layer **143G** generate light of color corresponding to each component material by electron-hole recombination by impressing an electric field. To obtain high visibility spectrum, as the component material of the red light emitting layer **143R** and the green light emitting layer **143G**, a material that respectively emits the red light R and the green light G having wavelength intensity distribution illustrated in FIG. 7 is desirably selected.

[0056] The red light emitting layer **143R** is composed of, for example, a mixture obtained by mixing 40 volume % of 2,6-bis[4-[N-(4-methoxy phenyl)-N-phenyl aminostyryl]naphthalene-1,5-dicarbonitril (BSN-BCN) as a guest material with 8-quinolinol aluminum complex (Alq3) having hole transport characteristics as a host material. Otherwise, α -NPD may be used as a host material. In this case, as a guest material, 30 volume % of BSN-BCN is preferably mixed therewith. Meanwhile, the green light emitting layer **143G** is composed of, for example, a mixture obtained by mixing 5 wt % of coumarin 6 as a guest material with green light emitting characteristics with ADN (anthracene dinaphthyl) as a host material. It is enough that the host material in the green light emitting layer **143G** is a material with higher electron transport characteristics than that of the host material composing the red light emitting layer **143R**. Specifically, it is desirable that the energy level of Highest Occupied Molecular Orbital (hereinafter referred to as HOMO) in the host material of the green light emitting layer **143G** is lower than that of HOMO

in the host material of the red light emitting layer **143R**, and in particular, the difference between two HOMOs is 0.2 eV or more. Further, the guest material may be fluorescent or phosphorescent. However, a fluorescent material is preferable since thereby light emitting characteristics are easily controlled. The red light emitting layer **143R** and the green light emitting layer **143G** preferably have a thickness of, for example, 5 nm and 10 nm, respectively.

[0057] The charge control layer **144M** in the organic light emitting device **20M** is made of a material that promotes injection of electrons into the red light emitting layer **143R** and prevents injection of holes into the green light emitting layer **143G**, and the charge control layer **144M** has a given thickness. Specifically, the charge control layer **144M** in the organic light emitting device **20M** is preferably made of a material shown in Chemical formula 1 or 8-quinolinol aluminum complex (Alq3), and the thickness thereof is preferably 3 nm or more (most preferably 20 nm). Due to existence of such a charge control layer **144M**, electron injected into the green light emitting layer **143G** is easily moved to the red light emitting layer **143R**, while hole injected into the red light emitting layer **143R** is hardly moved to the green light emitting layer **143G**. Thus, in the first organic layer **14** of the organic light emitting device **20M**, light emission of the red light emitting layer **143R** is advantageously generated than light emission of the green light emitting layer **143G**.


Chemical formula I

[0058] Meanwhile, the charge control layer **144C** in the organic light emitting device **20C** is made of a material that promotes injection of holes into the green light emitting layer **143G** and prevents injection of electrons into the red light emitting layer **143R**, and the charge control layer **144C** has a given thickness. Specifically, the charge control layer **144C** in the organic light emitting device **20C** is preferably made of, for example, a material shown in Chemical formula 2, bis[(N-naphthyl)-N-phenyl]benzidine (α -NPD), 4,4',4"-tris(3-methylphenylphenylamino)triphenyl amine (m-MT-DATA) or 4,4',4"-tris(2-naphthylphenylamino)triphenyl amine (2-TNATA), and the thickness thereof is preferably 3 nm or more (most preferably 20 nm). Due to existence of such a charge control layer **144C**, holes injected into the red light emitting layer **143R** are easily moved to the green light emit-

ting layer **143G**, while electrons injected into the green light emitting layer **143G** are hardly moved to the red light emitting layer **143R**. Thus, in the first organic layer **14** of the organic light emitting device **20M**, light emission of the green light emitting layer **143G** is advantageously generated than light emission of the red light emitting layer **143R**.

Chemical formula 2

[0059] The electron transport layer **145** is intended to improve efficiency to transport electrons to the red light emitting layer **143R** and the green light emitting layer **143G**. The electron transport layer **145** is, for example, made of Alg_3 , and has a thickness of 20 nm.

[0060] Further, an electron injection layer (not illustrated) composed of LiF , Li_2O or the like may be provided between the electron transport layer **143** and the connection layer **17**. In this case, it is desirable that the electron injection layer is a common layer for all the organic light emitting devices **20C** and **20M**. Further, the foregoing hole injection layer **141**, the hole transport layer **142**, the electron transport layer **145**, and the electron injection layer may respectively have a multi-layer structure composed of a plurality of layers.

[0061] The connection layer **17** functions as a charge generation layer. The connection layer **17** injects electrons into the first organic layer **14**, and injects holes into the second organic layer **15**. In the connection layer **17**, for example, an electron injection layer **171**, a charge generation layer **172**, and a hole injection layer **173** are layered sequentially from the first electrode layer **13** side. The structure of the connection layer **17** is not limited thereto, but the electron injection layer **171** may have a function as the charge generation layer **172**. Further, the connection layer **17** may have a structure selected as appropriate according to the structures of the first organic layer **14** and the second organic layer **15** arranged above and below the connection layer **17**. For example, the hole injection layer **173** may also have a function as a hole injection layer **151** (described later) of the second organic layer **15** located above the hole injection layer **173**.

[0062] As the electron injection layer **171**, a mixture layer of an electron transport organic material such as 8-hydroxyquinoline aluminum (Alq_3) and a reducing metal such as alkali and an alkali earth metal may be used. The charge generation layer **172** is able to be structured by using a material capable of generating electrons and holes such as V_2O_5 . In particular, a material having work function of 4.5 eV or

more is preferable. Further, the hole injection layer **173** is preferably structured by using hexaazatriphenylene.

[0063] As illustrated in FIG. 6, the second organic layer **15** has a multilayer structure in which the hole injection layer **151**, a hole transport layer **152**, a blue light emitting layer **153B**, and an electron transport layer **154** are sequentially layered from the connection layer **17** side. The light emitting layer provided in the second organic layer **15**, that is, the blue light emitting layer **153B** generates electron-hole recombination by being applied with electric field, and thereby emitting the blue light **B** on shorter wavelength side than that of the red light emitting layer **143R** and the green light emitting layer **143G** provided in the first organic layer **14**. To obtain spectrum with high visibility, a material that emits the blue light **B** having the wavelength intensity distribution illustrated in FIG. 7 is desirably selected as the component material thereof. Specific examples thereof include a material obtained by using ADN as a host material, and mixing 2.5 wt % of 4,4'-bis[2-{4-(*N,N*-diphenylamino)phenyl}vinyl]biphenyl (DPAVBi) as a blue light emitting guest material therewith. The blue light emitting layer **153B** preferably has, for example, a thickness of 30 nm. The hole injection layer **151**, the hole transport layer **152**, and the electron transport layer **154** are able to be made of a material similar to that of the hole injection layer **141**, the hole transport layer **142**, and the electron transport layer **145** in the first organic layer **14**.

[0064] The second electrode layer **16** has a thickness of, for example, from 5 nm to 50 nm both inclusive, and is composed of a simple substance or an alloy of metal elements such as aluminum (Al), magnesium (Mg), calcium (Ca), and sodium (Na). Specially, an alloy of magnesium and silver (MgAg alloy) or an alloy of aluminum (Al) and lithium (Li) (AlLi alloy) is preferable. The second electrode layer **16** is arranged oppositely to the first electrode layer **13** of the respective display devices **10R**, **10G**, and **10B**.

[0065] While the first electrode layer **13** has a function as a reflective layer, the second electrode layer **16** has a function as a half-transmissive reflective layer. The first electrode layer **13** and the second electrode layer **16** multiply reflect light generated in the first organic layer **14** and the second organic layer **15**. In other words, the organic light emitting devices **20C** and **20M** have a resonator structure in which each color light generated in the red light emitting layer **143R**, the green light emitting layer **143G**, and the blue light emitting layer **153B** is resonated with the use of the first organic layer **14** and the second organic layer **15** as a resonance section between the top face of the first electrode layer **13** and the bottom face of the second electrode layer **16**, and the resonated light is extracted from the second electrode layer **16** side. Since such a resonator structure is included, the half bandwidth of the spectrum of the extracted light is decreased, and color purity is able to be improved. Further, outside light entering from the sealing substrate **19** side is able to be attenuated by multiple reflections. Further, by combining with a phase difference plate and a polarizing plate (not illustrated), the outside light reflectance in the organic light emitting devices **20C** and **20M** is able to be extremely decreased.

[0066] Operation of the Display Unit

[0067] In this display unit obtained as above, a scanning signal is supplied from the scanning line drive circuit **130** to the respective pixels through the gate electrode of the writing transistor **Tr2**, and an image signal from the signal line drive circuit **120** is retained in the retentive capacity **Cs** through the writing transistor **Tr2**. Meanwhile, the power source supply

line drive circuit **140** supplies the first electric potential higher than the second electric potential to each power source supply line **140A** in synchronization with scanning in units of row by the scanning line drive circuit **130**. Therefore, conduction state of the drive transistor **Tr1** is selected, a drive current **Id** is injected into the respective organic light emitting devices **20C** and **20M**, and therefore electron-hole recombination is generated to initiate light emission. The light is multiply reflected between the first electrode layer **13** and the second electrode layer **16**, and is transmitted through the second electrode layer **16**, the protective film **18**, and the sealing substrate **19**, and is extracted from the top face.

[0068] As illustrated in FIG. 3, the magenta light **M** extracted from the organic light emitting device **20M** of the display device **10R** is transmitted through the yellow filter **25Y**, and therefore is converted to the red light **R**. The cyan light **C** extracted from the organic light emitting device **20C** of the display device **10G** is transmitted through the yellow filter **25Y**, and therefore is converted to the green light **G**. The cyan light **C** (the magenta light **M**) extracted from the organic light emitting device **20C** (**20M**) of the display device **10B** is transmitted through the blue filter **25B**, and therefore is converted to the blue light **B**. In the result, the red light **R**, the green light **G**, and the blue light **B** are able to be extracted from the respective pixels **1**.

Effect of the First Embodiment

[0069] As described above, in the display unit of this embodiment, the cyan light **C** and the magenta light **M** are emitted from the organic light emitting device group **20**, the cyan light **C** and the magenta light **M** entering the color filter group **25** are both converted to the blue light **B** by the blue filter **25B**, and are respectively converted to the green light **G** and the red light **R** by the yellow filter **25Y**. Therefore, compared to a case that the organic light emitting device group **20** emits white light, color separation is more facilitated. In other words, the thickness of the blue filter **25B** and the yellow filter **25Y** is able to be decreased without lowering the color purity. Thus, the whole light emitting efficiency is improved, and the thickness of the whole structure is able to be decreased. Further, differently from the case that the organic light emitting device group **20** emits white light, it is possible that only two color filters (the blue filter **25B** and the yellow filter **25Y**) instead of three color filters are used to extract the red light **R**, the green light **G**, and the blue light **B**. Thus, the structures of the color filter group **25** are simplified. Further, the organic light emitting devices **20C** and **20M** have the common structure for the section other than the charge control layer **144** included in the first organic layer **14**. Thus, in the manufacturing stage, at least one of the section other than the charge control layer **144** in the first organic layer **14** (the hole injection layer **141**, the hole transport layer **142**, the red light emitting layer **143R**, the green light emitting layer **143G**, and the electron transport layer **145**); the connection layer **17** (the electron injection layer **171**, the charge generation layer **172**, and the hole injection layer **173**); and the second organic layer **15** (the hole injection layer **151**, the hole transport layer **152**, the blue light emitting layer **153B**, and the electron transport layer **154**) is not necessarily coated separately for every organic light emitting device, and the manufacturing step is able to be simplified.

Second Embodiment

[0070] Next, a description will be given of a display unit including a pixel **2** as a second embodiment with reference to

FIG. 8. The pixel **2** has a structure similar to that of the pixel **1** in the first embodiment, except that the structure of the color filter group **25** is different. Thus, in the following description, regarding the pixel **2**, for the substantively same elements as those of the pixel **1**, the same referential symbols are affixed thereto, and the description thereof will be omitted as appropriate.

[0071] FIG. 8 illustrates a cross sectional structure of the pixel **2**, and corresponds to FIG. 3. As illustrated in FIG. 8, in the pixel **2**, the color filter group **25** in which a red filter **25R**, a green filter **25G**, and the blue filter **25B** are arranged along the bottom face of the sealing substrate **19** is included. The red filter **25R** transmits red light (for example, light with 580 nm to less than 700 nm). The green filter **25G** transmits green light (for example, light with 500 nm to less than 580 nm).

[0072] In the pixel **2**, for example, the display device **10R** displays the red light **R** by combination of the organic light emitting device **20M** and the red filter **25R**. The display device **10G** displays the green light **G** by combination of the organic light emitting device **20C** and the green filter **25G**. The display device **10B** displays the blue light **B** by combination of the organic light emitting device **20C** and the blue filter **25B**, or displays the blue light **B** by combination of the organic light emitting device **20M** and the blue filter **25B** as in the pixel **1**.

[0073] In other words, in the pixel **2**, the magenta light **M** extracted from the organic light emitting device **20M** of the display device **10R** is transmitted through the red filter **25R**, and therefore is converted to the red light **R**. The cyan light **C** extracted from the organic light emitting device **20C** of the display device **10G** is transmitted through the green filter **25G**, and therefore is converted to the green light **G**. The cyan light **C** (the magenta light **M**) extracted from the organic light emitting device **20C** (**20M**) of the display device **10B** is transmitted through the blue filter **25B**, and therefore is converted to the blue light **B**. In the result, the red light **R**, the green light **G**, and the blue light **B** are able to be extracted from the respective pixels **2**.

[0074] As described above, in the display unit of this embodiment, the cyan light **C** and the magenta light **M** are emitted from the organic light emitting device group **20**, the cyan light **C** and the magenta light **M** enter the color filter group **25**. The cyan light **C** is converted to the green light **G** and the blue light **B** by the green filter **25G** and the blue filter **25B**, respectively, and the magenta light **M** entering the color filter group **25** is converted to the red light **R** and the blue light **B** by the red filter **25R** and the blue filter **25B**, respectively. Therefore, compared to a case that the organic light emitting device group **20** emits white light, color separation is more facilitated. In other words, the thickness of the red filter **25R**, the green filter **25G**, and the blue filter **25B** is able to be decreased without lowering the color purity. Thus, the whole light emitting efficiency is improved, and the thickness of the whole structure is able to be decreased. Further, compared to the first embodiment, since the transmissive wavelength region of the red filter **25R** (for example, light with 580 nm to less than 700 nm) and the transmissive wavelength region of the green filter **25G** (for example, light with 500 nm to less than 580 nm) are narrower than the transmissive wavelength region of the yellow filter **25Y** (for example, light with 5000 nm to less than 700 nm), outside light reflection is easily inhibited. Thus, contrast is able to be improved. Further while the yellow filter **25Y** transmits both the red light and the green light, the red filter **25R** is able to block the green light and the

green filter **25G** is able to block the red light. Thus, according to this embodiment using the red filter **25R** or the green filter **25G**, compared to the first embodiment using the yellow filter **25Y**, leakage light from an adjacent pixel is able to be more inhibited, and view angle dependence of chromaticity is able to be decreased.

First Modified Example

[0075] In the foregoing second embodiment, the organic light emitting device **20M** in which the display device **10R** emits the magenta light **M** is included. However, the following structure may be adopted. In other words, the organic light emitting device (not illustrated) in which the display device **10R** emits the red light as a first modified example may be included. In this case, the organic light emitting device has a multilayer structure obtained by removing the charge control layer **144M** from the organic light emitting device **20M** illustrated in FIG. 6. In the case where the foregoing organic light emitting device as the first modified example is included, the display device **10R** also displays the red light **R** in combination with the foregoing red filter **25R**.

Third Embodiment

[0076] Next, a description will be given of a display unit including a pixel **3** as a third embodiment with reference to FIG. 9 to FIG. 11. The pixel **3** has a structure similar to that of the pixel **2** in the foregoing second embodiment, except that an organic light emitting device group **21** is included instead of the organic light emitting device group **20**. Thus, in the following description, regarding the pixel **3**, for the substantively same elements as those of the pixels **1** and **2**, the same referential symbols are affixed thereto, and the description thereof will be omitted as appropriate.

[0077] FIG. 9 illustrates a cross sectional structure of the pixel **3**, and corresponds to FIG. 8. As illustrated in FIG. 9, in the pixel **3**, for example, the display device **10R** has an organic light emitting device **21Y** emitting yellow light **Y** and the red filter **25R**; the display device **10G** has an organic light emitting device **21C** and the green filter **25G**; and the display device **10B** has the organic light emitting device **21C** and the blue filter **25B**. Otherwise, the display device **10R** may have an organic light emitting device **21M** and the red filter **25R**; the display device **10G** may have the organic light emitting device **21Y** and the green filter **25G**; and the display device **10B** may have the organic light emitting device **21M** and the blue filter **25B**. Structural combinations of the display device **10R**, the display device **10G**, and the display device **10B** are not limited to the foregoing combinations, but may be voluntarily selected.

[0078] The yellow light **Y** is light that has wavelength dependence of intensity indicated by curved line **10Y** of FIG. 10, for example. In FIG. 10, the vertical axis represents a relative intensity, and the horizontal axis represents a wavelength [nm]. In other words, the yellow light **Y** has fifth peak **P5** indicating the maximum value in the range from 500 nm to 580 nm both inclusive and sixth peak **P6** indicating the maximum value in the range from 580 nm to 700 nm both inclusive in the intensity distribution. The fifth peak **P5** indicates the maximum intensity.

[0079] Next, a description will be given in detail of the organic light emitting devices **21C**, **21M**, and **21Y** structuring the display devices **10R**, **10G**, and **10B** of the pixel **3**. FIG. 11 illustrates a cross sectional structure of the organic light emitting devices **21C**, **21M**, and **21Y**. The organic light emitting devices **21C**, **21M**, and **21Y** have a common structure except that each structure of the charge control layer **144** included in the first organic layer **14** is different from each other, and thus a description will be given collectively.

[0080] As illustrated in FIG. 11, the first organic layer **14** has a multilayer structure in which the hole injection layer **141**, the hole transport layer **142**, the red light emitting layer **143R**, the charge control layer **144** (**144C** and **144M**), a blue light emitting layer **143B**, and the electron transport layer **145** are sequentially layered from the first electrode layer **13** side. However, the organic light emitting device **20Y** does not have the charge control layer **144**. The hole injection layer **141** is intended to improve efficiency to inject holes into the red light emitting layer **143R** and the blue light emitting layer **143B**, and function as a buffer layer to prevent current leakage. The hole transport layer **142** functions to improve efficiency to transport holes to the red light emitting layer **143R** and the blue light emitting layer **143B**. The blue light emitting layer **143B** has a structure similar to that of the blue light emitting layer **153B** illustrated in FIG. 6, and emits the blue light **B** by electron-hole recombination. Further, the electron transport layer **145** is intended to improve efficiency to transport electrons into the red light emitting layer **143R** and the blue light emitting layer **143B**.

[0081] The charge control layer **144M** in the organic light emitting device **20M** functions to promote injection of electrons into the red light emitting layer **143R** and prevent injection of holes into the blue light emitting layer **143B**. Due to existence of such a charge control layer **144M**, electrons injected into the blue light emitting layer **143B** are easily moved to the red light emitting layer **143R**, while holes injected into the red light emitting layer **143R** are hardly moved to the blue light emitting layer **143B**. Thus, in the first organic layer **14** of the organic light emitting device **21M**, light emission of the red light emitting layer **143R** is advantageously generated than light emission of the blue light emitting layer **143B**.

[0082] Meanwhile, the charge control layer **144C** in the organic light emitting device **20C** functions to promote injection of holes into the blue light emitting layer **143B** and prevent injection of electrons into the red light emitting layer **143R**. Due to existence of such a charge control layer **144C**, holes injected into the red light emitting layer **143R** is easily moved to the blue light emitting layer **143B**, while electrons injected into the blue light emitting layer **143B** is hardly moved to the red light emitting layer **143R**. Thus, in the first organic layer **14** of the organic light emitting device **21M**, light emission of the blue light emitting layer **143B** is advantageously generated than light emission of the red light emitting layer **143R**.

[0083] As illustrated in FIG. 11, the second organic layer **15** has a multilayer structure in which the hole injection layer **151**, the hole transport layer **152**, a green light emitting layer **153G**, and the electron transport layer **154** are sequentially layered from the connection layer **17** side. The light emitting layer provided in the second organic layer **15**, that is, the green light emitting layer **153G** has a structure similar to that of the green light emitting layer **143G** illustrated in FIG. 6, and emits the green light **G** having a wavelength in the range between the red light **R** from the red light emitting layer **143R** and the blue light **B** from the blue light emitting layer **143B** by electron-hole recombination.

[0084] As illustrated in FIG. 9, in the pixel 3 having the foregoing structure, the yellow light Y (the magenta light M) extracted from the organic light emitting device 21Y (21M) of the display device 10R is transmitted through the red filter 25R, and therefore is converted to the red light R. The cyan light C (the yellow light Y) extracted from the organic light emitting device 21C (21Y) of the display device 10G is transmitted through the green filter 25G, and therefore is converted to the green light G. The cyan light C (the magenta light M) extracted from the organic light emitting device 21C (21M) of the display device 10B is transmitted through the blue filter 25B, and therefore is converted to the blue light B. In the result, the red light R, the green light G, and the blue light B are able to be extracted from the respective pixels 3.

[0085] As described above, in the display unit of this embodiment, at least two of the cyan light C, the magenta light M, and the yellow light Y are emitted from the organic light emitting device group 21, and the emitted light enters the color filter group 25. Thereafter, the yellow light Y is converted to the red light R and the green light G by the red filter 25R and the green filter 25G, respectively, the cyan light C is converted to the green light G and the blue light R by the green filter 25G and the blue filter 25B, respectively, and the magenta light M is converted to the red light R and the blue light B by the red filter 25R and the blue filter 25B, respectively. Therefore, compared to a case that the organic light emitting device group 21 emits white light, color separation is more facilitated. In other words, the thickness of the red filter 25R, the green filter 25G, and the blue filter 25B is able to be decreased without lowering the color purity. Thus, the whole light emitting efficiency is improved, and the thickness of the whole structure is able to be decreased.

Fourth Embodiment

[0086] Next, a description will be given of a display unit as a fourth embodiment with reference to FIG. 12. The display unit has a structure similar to that of the foregoing second embodiment, except that organic light emitting devices 22C and 22M are included instead of the organic light emitting devices 20C and 20M. Thus, a description will be hereinafter given of the organic light emitting devices 22C and 22M, and description of other elements will be omitted.

[0087] As illustrated in FIG. 12, in the organic light emitting devices 22C and 22M, the connection layer 17 is not provided, but only one organic layer 26 is provided between the first organic layer 13 and the second electrode layer 16. The organic light emitting devices 22C and 22M have a common structure except for the structure of the charge control layer 264 in the organic layer 26, and thus a description will be given collectively.

[0088] The organic layer 26 has a multilayer structure in which a hole injection layer 261, a hole transport layer 262, a red light emitting layer 263R, a charge control layer 264, a common light emitting layer 263GB, and an electron transport layer 265 are sequentially layered from the first electrode layer 13 side. The hole injection layer 261, the hole transport layer 262, the red light emitting layer 263R, the charge control layer 264, and the electron transport layer 265 have structures similar to those of the hole injection layer 141, the hole transport layer 142, the red light emitting layer 143R, the charge control layer 144, and the electron transport layer 145 in FIG. 6.

[0089] The common light emitting layer 263GB is composed of a mixture obtained by mixing a guest material hav-

ing green light emitting characteristics and a guest material having blue light emitting characteristics with a host material having electron transport characteristics. Specific examples include a mixture obtained by mixing 5 wt % of coumarin 6 as a guest material having green light emitting characteristics with ADN (anthracene dinaphthyl) as a host material, and further mixing 2.5 wt % of DPAVBi as a guest material having blue light emitting characteristics therewith.

[0090] In the display unit including the organic light emitting devices 22C and 22M having the foregoing structure, effect similar to that of the foregoing second embodiment is able to be obtained as well.

EXAMPLES

[0091] A description will be given of examples of the application.

Example 1

[0092] In this example, a display unit having the organic light emitting device described in the foregoing second embodiment was fabricated. The structure thereof is illustrated in Table 1. Further, the specific fabrication procedure is as follows. First, after an ITO film having a thickness of 150 nm was formed on the base substance 11, patterning was made in a given shape. Therefore, the first electrode layer 13 as an anode was formed. Next, the device separation layer 24 composed of silicon oxide having a thickness of 2 μ m was formed by sputtering method to fill in the surrounding area of the first electrode layer 13.

[0093] Next, after 2-TNATA was evaporated on the surface of the first electrode layer 13 to form the hole injection layer 141 having a film thickness of 10 nm, α -NPD was evaporated. Therefore, the hole transport layer 142 having a film thickness of 10 nm was formed. Thereafter, a mixture obtained by mixing 30 wt % of BSN with α -NPD was evaporated, and therefore the red light emitting layer 143R having a thickness of 5 nm was formed.

[0094] Thereafter, in the organic light emitting device 20C that would structure the display devices 10G and 10B, the charge control layer 144C having a thickness of 20 nm was formed by evaporating α -NPD. Meanwhile, in the organic light emitting device 20M that would structure the display device 10R, nothing was formed as the charge control layer.

[0095] Further, a mixture obtained by mixing 5 wt % of coumarin 6 with ADN was evaporated to have a thickness of 10 nm so that the charge control layer 144C or the red light emitting layer 143R was covered to obtain the green light emitting layer 143G. Thereafter, the electron transport layer 145 having a thickness of 10 nm was formed by using Alg_3 , and therefore the first organic layer 14 was obtained.

[0096] Subsequently, the connection layer 17 composed of a two layer structure of the electron injection layer 171 having a thickness of 5 nm and the charge generation layer 172 having a thickness of 10 nm was formed on the first organic layer 14. The electron injection layer 171 was formed by evaporating a mixture obtained by mixing 10 wt % of lithium (Li) with Alg_3 . The charge generation layer 172 was formed by evaporating V_2O_5 .

[0097] Subsequently, the second organic layer 15 was formed on the connection layer 17 as follows. First, as the hole injection layer 151, 2-TNATA was evaporated to have a film thickness of 10 nm on the connection layer 17. Next, as the hole transport layer 152, α -NPD was evaporated to have a

film thickness of 10 nm. Thereafter, a mixture obtained by mixing 2.5 wt % of DPAVBi with ADN was evaporated to have a film thickness of 30 nm, and therefore the blue light emitting layer **153B** was formed. Further, as the electron transport layer **154**, Alg_3 was evaporated to have a film thickness of 10 nm. Therefore, the second organic layer **15** including the blue light emitting layer **153B** was obtained.

[0098] Subsequently, an LiF layer having a film thickness of 0.5 nm was formed to cover the second organic layer **15**. Further, an aluminum layer having a film thickness of 50 nm was formed, and therefore the second electrode layer **16** as a cathode was formed. Finally, the color filter group **25** having the red filter **25R**, the green filter **25G**, and the blue filter **25B**, the protective layer **18**, the sealing substrate **19** and the like were sequentially formed. Therefore, the display unit was completed.

Example 2

[0099] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144C** in the organic light emitting device **20C** was formed by evaporating a material expressed by Chemical Formula 2 instead of α -NPD.

Example 3

[0100] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144C** in the organic light emitting device **20C** was formed by evaporating m-MTDATA instead of α -NPD.

Example 4

[0101] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144C** in the organic light emitting device **20C** was formed by evaporating 2-TNATA instead of α -NPD.

Example 5

[0102] A display unit was fabricated in the same manner as that of Example 1, except that Alq_3 was evaporated to form a layer having a film thickness of 20 nm as the charge control layer **144M** in the organic light emitting device **20M**.

Example 6

[0103] A display unit was fabricated in the same manner as that of Example 1, except that a material expressed by Chemical formula 1 was evaporated to form a layer having a film thickness of 20 nm as the charge control layer **144M** in the organic light emitting device **20M**.

Example 7

[0104] A display unit was fabricated in the same manner as that of Example 1, except that α -NPD was evaporated to form a layer having a film thickness of 1 nm as the charge control layer **144M** in the organic light emitting device **20M**.

Example 8

[0105] A display unit was fabricated in the same manner as that of Example 1, except that a material expressed by Chemical formula 2 was evaporated to form a layer having a film

thickness of 1 nm as the charge control layer **144M** in the organic light emitting device **20M**.

Example 9

[0106] In this example, a display unit having the organic light emitting device (FIG. 11) described in the foregoing third embodiment was fabricated. In other words, a display unit was fabricated in the same manner as that of Example 1, except that the first organic layer **14** and the second organic layer **15** were formed as follows.

[0107] For the first organic layer **14**, after the charge control layer **144C** or the red light emitting layer **143R** was formed in the same manner as that of Example 1, a mixture obtained by mixing 2.5 wt % of DPAVBi with ADN was evaporated to have a thickness of 30 nm so that the charge control layer **144C** or the red light emitting layer **143R** was covered to obtain the blue light emitting layer **143B**. Further, Alq_3 was evaporated to form the electron transport layer **145** having a thickness of 10 nm, and therefore the first organic layer **14** was obtained.

[0108] For the second organic layer **15**, after the hole injection layer **151** and the hole transport layer **152** were formed in the same manner as those of Example 1, a mixture obtained by mixing 5 wt % of coumarin 6 with ADN was evaporated to have a thickness of 10 nm, and therefore the green light emitting layer **153G** was obtained. Further, as the electron transport layer **154**, Alq_3 was evaporated to have a film thickness of 10 nm, and therefore the second organic layer **15** was obtained.

Example 10

[0109] In this example, a display unit having the organic light emitting device (FIG. 12) described in the foregoing fourth embodiment was fabricated. In other words, a display unit was fabricated in the same manner as that of Example 1, except that the organic layer **26** was formed as follows instead of the first organic layer **14**, the connection layer **17**, and the second organic layer **15**.

[0110] For the organic layer **26**, after 2-TNATA was evaporated on the surface of the first electrode layer **13** to form the hole injection layer **261** having a film thickness of 10 nm, α -NPD was evaporated thereon. Therefore, the hole transport layer **262** having a film thickness of 10 nm was formed. Thereafter, a mixture obtained by mixing 30 wt % of BSN with α -NPD was evaporated, and therefore the red light emitting layer **263R** having a thickness of 5 nm was formed.

[0111] Thereafter, in the organic light emitting device **20C** that would structure the display devices **10G** and **10B**, the charge control layer **144C** having a thickness of 20 nm was formed by evaporating α -NPD. Meanwhile, in the organic light emitting device **20M** that would structure the display device **10R**, nothing was formed as the charge control layer.

[0112] Further, a mixture obtained by mixing 5 wt % of coumarin 6 and 2.5 wt % of DPAVBi with ADN as a host material was evaporated to have a thickness of 10 nm so that the charge control layer **144C** or the red light emitting layer **143R** was covered to obtain the common light emitting layer **263G**. Further, the electron transport layer **145** having a thickness of 10 nm was formed by using Alq_3 , and therefore the organic layer **26** was obtained.

Example 11

[0113] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144C**

in the organic light emitting device **20C** and the charge control layer **144M** in the organic light emitting device **20M** were formed to have a thickness of 3 nm by using α -NPD.

Example 12

[0114] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144C** in the organic light emitting device **20C** and the charge control layer **144M** in the organic light emitting device **20M** were formed to have a thickness of 20 nm by using α -NPD.

Example 13

[0115] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144C** in the organic light emitting device **20C** and the charge control layer **144M** in the organic light emitting device **20M** were formed to have a thickness of 20 nm by using Alq_3 .

Example 14

[0116] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144C** in the organic light emitting device **20C** and the charge control layer **144M** in the organic light emitting device **20M** were not formed.

Example 15

[0117] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144M** in the organic light emitting device **20M** was formed by evaporating α -NPD to form a layer having a film thickness of 20 nm, and the charge control layer **144C** in the organic light emitting device **20C** was formed to have a thickness of 30 nm by using α -NPD.

Example 16

[0118] A display unit was fabricated in the same manner as that of Example 1, except that the charge control layer **144M** in the organic light emitting device **20M** was formed by evaporating a material expressed by Chemical formula 2 to form a layer having a film thickness of 20 nm, and the charge control layer **144C** in the organic light emitting device **20C** was formed to have a thickness of 30 nm by using α -NPD.

Example 17

[0119] A display unit was fabricated in the same manner as that of Example 10, except that the charge control layer **264** in the organic layer **26** was not formed.

TABLE 1

	Structure of charge control layer		Structure of organic light emitting device
	10R	10G and 10B	
Example 1	Absent	α -NPD (20 nm)	FIG. 6
Example 2	Absent	Chemical formula 2 (20 nm)	FIG. 6
Example 3	Absent	mMTDATA (20 nm)	FIG. 6
Example 4	Absent	2-TNATA (20 nm)	FIG. 6
Example 5	Alq_3 (20 nm)	α -NPD (20 nm)	FIG. 6
Example 6	Chemical formula 1 (20 nm)	α -NPD (20 nm)	FIG. 6
Example 7	α -NPD (1 nm)	α -NPD (20 nm)	FIG. 6
Example 8	Chemical formula 2 (1 nm)	α -NPD (20 nm)	FIG. 6
Example 9	Absent	α -NPD (20 nm)	FIG. 11
Example 10	Absent	α -NPD (20 nm)	FIG. 12
Example 11		α -NPD (3 nm)	FIG. 6
Example 12		α -NPD (20 nm)	FIG. 6
Example 13		Alq_3 (20 nm)	FIG. 6
Example 14		Absent	FIG. 6
Example 15	α -NPD (20 nm)	α -NPD (30 nm)	FIG. 6
Example 16	Chemical formula 2 (20 nm)	α -NPD (30 nm)	FIG. 6
Example 17	Absent	Absent	FIG. 12

[0120] In Examples 1 to 10, based on the foregoing structure, the organic light emitting device **20M** structuring the display device **10R** emits the magenta light **M**, and the organic light emitting device **20M** structuring the display devices **10G** and **10B** emits the cyan light **C**. Meanwhile, in Example 11, the organic light emitting devices **20C** and **20M** structuring the display devices **10R**, **10G**, and **10B** emit white light. In Examples 12, 15, and 16, the organic light emitting devices **20C** and **20M** structuring the display devices **10R**, **10G**, and **10B** emit the cyan light **C**. In Examples 13, 14, and 17, the organic light emitting devices **20C** and **20M** structuring the display devices **10R**, **10G**, and **10B** emit the magenta light **M**. Further, for the display units as the foregoing respective examples, evaluation thereof (comparison of chromaticity and light emitting efficiency of light transmitted through the color filter group) was made. The results are illustrated in Table 2 all together.

TABLE 2

	Chromaticity (CIE _x and CIE _y)			Light emitting efficiency (cd/A)		
	R	G	B	R	G	B
Example 1	0.665, 0.350	0.260, 0.722	0.144, 0.090	2.8	6.3	1.0
Example 2	0.654, 0.350	0.260, 0.723	0.144, 0.092	2.8	6.4	1.1
Example 3	0.656, 0.350	0.262, 0.724	0.143, 0.090	2.8	5.9	1.1
Example 4	0.655, 0.350	0.260, 0.725	0.144, 0.090	2.8	5.8	1.0
Example 5	0.655, 0.351	0.261, 0.726	0.145, 0.091	2.6	6.3	1.0
Example 6	0.655, 0.350	0.260, 0.727	0.144, 0.092	2.7	6.3	1.0
Example 7	0.655, 0.350	0.260, 0.728	0.144, 0.093	2.5	6.3	1.0
Example 8	0.655, 0.350	0.260, 0.729	0.144, 0.090	2.5	6.3	1.0
Example 9	0.657, 0.344	0.255, 0.740	0.147, 0.099	2.6	8.4	0.6

TABLE 2-continued

	Chromaticity (CIE _x and CIE _y)			Light emitting efficiency (cd/A)		
	R	G	B	R	G	B
Example 10	0.655, 0.350	0.260, 0.722	0.144, 0.090	2.8	3.3	0.5
Example 11	0.658, 0.347	0.263, 0.725	0.146, 0.091	2.0	4.2	1.1
Example 12	0.625, 0.409	0.260, 0.728	0.144, 0.089	0.7	6.4	1.2
Example 13	0.655, 0.350	0.260, 0.701	0.144, 0.090	2.6	1.2	1.2
Example 14	0.655, 0.351	0.260, 0.703	0.144, 0.091	2.8	1.1	1.1
Example 15	0.625, 0.409	0.260, 0.731	0.144, 0.092	0.7	5.4	1.2
Example 16	0.625, 0.409	0.260, 0.732	0.144, 0.093	0.6	5.4	1.0
Example 17	0.655, 0.350	—	—	2.8	<0.1	<0.1

[0121] As is able to be seen from Table 2, it is found that according to Examples 1 to 10 corresponding to the display unit of the application, the red light R, the green light G, and the blue light B were able to be more effectively emitted. Such a result may be generated for the following reason. That is, at least two of the cyan light, the magenta light, and the yellow light were emitted from the organic light emitting device group.

[0122] While the application has been described with reference to several embodiments and several examples, the application is not limited to the foregoing embodiments and the like, and various modifications may be made. For example, the material, the thickness, the film-forming method, the film-forming conditions and the like of each layer are not limited to those described in the foregoing embodiments and the like, but other material, other thickness, other film-forming method, and other film-forming conditions may be adopted.

[0123] Further, in the foregoing first embodiment and the like, the description has been given of the case in which the first organic layer 14 (first light emitting unit), the connection layer 17 (charge generation layer), and the second organic layer 15 (second light emitting unit) are layered in this order over the first electrode layer 13 (first electrode layer). However, it may be possible that the arrangement relation between the first organic layer 14 and the second organic layer 15 may be reversed. In other words, it may be possible to adopt a structure in which the second organic layer 15, the connection layer 17, and the first organic layer 14 are layered in this order over the first electrode layer 13.

[0124] Further, in the foregoing embodiment and the like, the description has been given of the example of the top face light emitting type display device in which light is extracted from the second electrode layer 16 side as the upper electrode. However, the application is able to be applied to a bottom face light emitting type display device in which light is extracted from the base substance 11 side by using the base substance 11 made of a transparent material. Further, emitted light is able to be extracted from both the top face and the bottom face by using a transparent electrode as the first electrode layer 13 and the second electrode layer 16.

[0125] Further, in the foregoing embodiment, the description has been specifically given of the structure of the organic light emitting device. However, it is not always necessary to provide all layers, and other layer may be further provided.

[0126] Further, in the foregoing respective embodiments, the description has been given of the case of the active matrix type display unit. However, the application is able to be also applied to a passive matrix type display unit. Furthermore, the

structure of the pixel drive circuit for driving the active matrix is not limited to the structure described in the foregoing respective embodiments. If necessary, a capacity device or a transistor may be added. In this case, according to the change of the pixel drive circuit, a necessary drive circuit may be added in addition to the foregoing signal line drive circuit 120 and the scanning line drive circuit 130.

[0127] Further, in the foregoing respective embodiments, the description has been given of the case in which the display devices 10R, 10G, and 10B composing one pixel are arranged in line in this order as an example. However, the arrangement thereof is not limited thereto. The arrangement is able to be selected as appropriate according to the purpose.

[0128] It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

The application is claimed as follows:

1. A display unit comprising:
a multilayer structure in which a light emitting device group that respectively has a plurality of cyan organic light emitting devices emitting cyan light and a plurality of magenta organic light emitting devices emitting magenta light and a color filter group that has a plurality of blue filters transmitting blue light and a plurality of yellow filters transmitting yellow light are sequentially layered over a substrate.
2. The display unit according to claim 1, wherein the plurality of yellow filters are arranged so that the cyan light from the cyan organic light emitting device enters part of the plurality of yellow filters and the magenta light from the magenta organic light emitting device enters the other part of the plurality of yellow filters, and
the plurality of blue filters are arranged so that at least one of the cyan light from the cyan organic light emitting device and the magenta light from the magenta organic light emitting device enters the plurality of blue filters.
3. A display unit comprising:
a multilayer structure in which a light emitting device group that respectively has a plurality of cyan organic light emitting devices emitting cyan light and a plurality of magenta organic light emitting devices emitting magenta light and a color filter group that has a plurality of red filters transmitting red light, a plurality of green

filters transmitting green light, and a plurality of blue filters transmitting blue light are sequentially layered over a substrate.

4. The display unit according to claim 3, wherein the plurality of red filters are arranged so that the magenta light from the magenta organic light emitting device enters the plurality of red filters,

the plurality of green filters are arranged so that the cyan light from the cyan organic light emitting device enters the plurality of green filters, and

the plurality of blue filters are arranged so that at least one of the cyan light from the cyan organic light emitting device and the magenta light from the magenta organic light emitting device enters the plurality of blue filters.

5. The display unit according to claim 1, wherein the cyan light has a first peak indicating the maximum value in the range from 400 nm to 500 nm both inclusive and a second peak indicating the maximum value in the range from 500 nm to 580 nm both inclusive in the intensity distribution and the first peak or the second peak indicates the maximum intensity, and

the magenta light has a third peak indicating the maximum value in the range from 400 nm to 500 nm both inclusive and a fourth peak indicating the maximum value in the range from 600 nm to 700 nm both inclusive in the intensity distribution, and the third peak or the fourth peak indicates the maximum intensity.

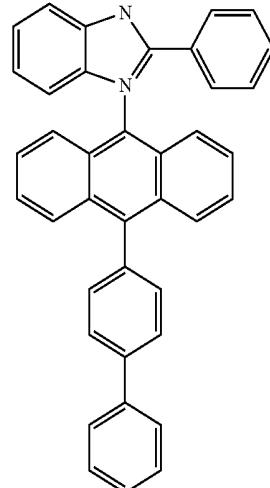
6. The display unit according to claim 1, wherein both the cyan organic light emitting device and the magenta organic light emitting device have a structure in which a first electrode layer, a first light emitting unit including a first light emitting layer and a second light emitting layer that emit each color light different from each other, a charge generation layer, a second light emitting unit including a third light emitting layer that emits color light different from the color light of the first light emitting layer and the second light emitting layer are sequentially layered.

7. The display unit according to claim 6, wherein the first electrode layer is an anode,

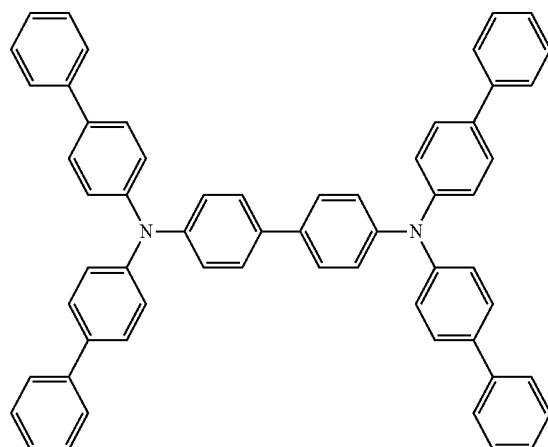
the second electrode layer is a cathode,

the first light emitting unit includes a first hole transport layer, a red light emitting layer as the first light emitting layer, a charge control layer, a green light emitting layer as the second light emitting layer, and a first electron transport layer sequentially from the first electrode layer side, and

the second light emitting unit includes a second hole transport layer, a blue light emitting layer as the third light emitting layer, and a second electron transport layer sequentially from the first electrode layer side.


8. The display unit according to claim 7, wherein the charge control layer in the magenta organic light emitting device is made of a material that promotes injection of electrons into the red light emitting layer and prevents injection of holes into the green light emitting layer, and

the charge control layer in the cyan organic light emitting device is made of a material that promotes injection of holes into the green light emitting layer and prevents injection of electrons into the red light emitting layer.


9. The display unit according to claim 7, wherein the charge control layer in the magenta organic light emitting device is made of a material shown in Chemical formula 1 or 8-quinolinol aluminum complex (Alq_3), and

the charge control layer in the cyan organic light emitting device is made of a material shown in Chemical formula 2, bis[(N-naphthyl)-N-phenyl]benzidine (α -NPD), 4,4',4"-tris(3-methylphenylphenylamino)triphenyl amine (m-MTDA) or 4,4',4"-tris(2-naphthylphenylamino)triphenyl amine (2-TNATA).

Chemical formula 1

Chemical formula 2

10. The display unit according to claim 6, wherein the charge generation layer injects electrons into the first light emitting unit and injects holes into the second light emitting unit.

11. A display unit comprising:

a multilayer structure in which a light emitting device group that has at least two of a plurality of cyan organic light emitting devices emitting cyan light, a plurality of magenta organic light emitting devices emitting magenta light, and a plurality of yellow organic light emitting devices emitting yellow light and a color filter group that has a plurality of red filters transmitting red light, a plurality of green filters transmitting green light, and a plurality of blue filters transmitting blue light are sequentially layered over a substrate.

12. The display unit according to claim 11, wherein the plurality of red filters are arranged so that at least one of the magenta light from the magenta organic light emitting device

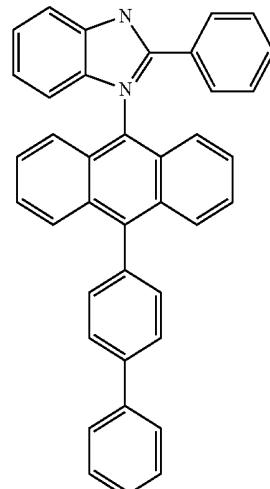
and the yellow light from the yellow organic light emitting device enters the plurality of red filters,

the plurality of green filters are arranged so that at least one of the cyan light from the cyan organic light emitting device and the yellow light from the yellow organic light emitting device enters the plurality of green filters, and the plurality of blue filters are arranged so that at least one of the cyan light from the cyan organic light emitting device and the magenta light from the magenta organic light emitting device enters the plurality of blue filters.

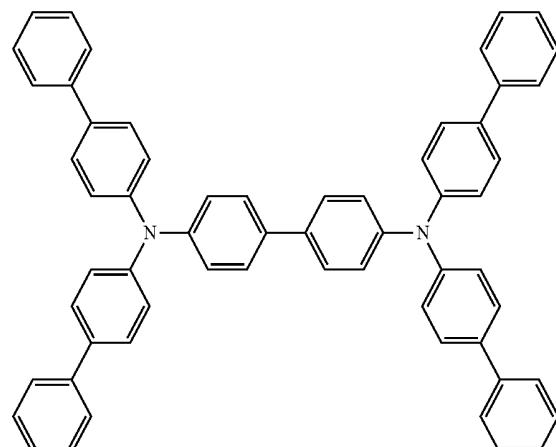
13. The display unit according to claim 11, wherein the cyan light has a first peak indicating the maximum value in the range from 400 nm to 500 nm both inclusive and a second peak indicating the maximum value in the range from 500 nm to 580 nm both inclusive in the intensity distribution and the first peak or the second peak indicates the maximum intensity, the magenta light has a third peak indicating the maximum value in the range from 400 nm to 500 nm both inclusive and a fourth peak indicating the maximum value in the range from 600 nm to 700 nm both inclusive in the intensity distribution, and the third peak or the fourth peak indicates the maximum intensity, and the yellow light has a fifth peak indicating the maximum value in the range from 500 nm to 580 nm both inclusive and a sixth peak indicating the maximum value in the range from 580 nm to 700 nm both inclusive in the intensity distribution, and the fifth peak or the sixth peak indicates the maximum intensity.

14. The display unit according to claim 11, wherein all the cyan organic light emitting device, the magenta organic light emitting device, and the yellow organic light emitting device have a structure in which an anode, a first light emitting unit including a first hole transport layer, a red light emitting layer, a green light emitting layer, and a first electron transport layer sequentially from the anode side, a charge generation layer, a second light emitting unit including a second hole transport layer, a blue light emitting layer, and a second electron transport layer sequentially from the anode side, and a cathode are sequentially layered, and

the first light emitting unit in the cyan organic light emitting device and the magenta organic light emitting device further includes a charge control layer between the red light emitting layer and the green light emitting layer.


15. The display unit according to claim 14, wherein the charge control layer in the magenta organic light emitting device is made of a material that promotes injection of electrons into the red light emitting layer and prevents injection of holes into the green light emitting layer, and

the charge control layer in the cyan organic light emitting device is made of a material that promotes injection of holes into the green light emitting layer and prevents injection of electrons into the red light emitting layer.


16. The display unit according to claim 14, wherein the charge control layer in the magenta organic light emitting device is made of a material shown in Chemical formula 3 or 8-quinolinol aluminum complex (Alq₃), and

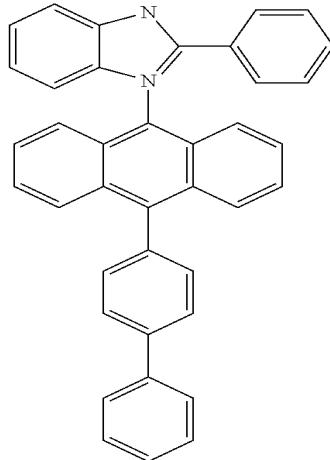
the charge control layer in the cyan organic light emitting device is made of a material shown in Chemical formula 4, bis[(N-naphthyl)-N-phenyl]benzidine (α -NPD), 4,4',4"-tris(3-methylphenylphenylamino)triphenyl amine (m-MTDATA) or 4,4',4"-tris(2-naphthylphenylamino)triphenyl amine (2-TNATA).

Chemical formula 3

Chemical formula 4

17. The display unit according to claim 14, wherein the charge generation layer injects electrons into the first light emitting unit and injects holes into the second light emitting unit.

18. A display unit comprising:
a multilayer structure in which a light emitting device group that respectively has a plurality of cyan organic light emitting devices emitting cyan light, a plurality of magenta organic light emitting devices emitting magenta light, and a plurality of red organic light emitting devices emitting red light and a color filter group that has a plurality of red filters transmitting the red light from the red organic light emitting device, a plurality of green filters transmitting green light contained in the cyan light from the cyan organic light emitting device, and a plurality of blue filters transmitting blue light contained in at least one of the cyan light from the cyan organic light emitting device and the magenta light from the magenta organic light emitting device are sequentially layered over a substrate.


* * * * *

专利名称(译)	显示单元		
公开(公告)号	US20110095276A1	公开(公告)日	2011-04-28
申请号	US12/899133	申请日	2010-10-06
[标]申请(专利权)人(译)	索尼公司		
申请(专利权)人(译)	索尼公司		
当前申请(专利权)人(译)	JOLED INC.		
[标]发明人	IMAI TOSHIAKI MATSUNAMI SHIGEYUKI KIJIMA YASUNORI		
发明人	IMAI, TOSHIAKI MATSUNAMI, SHIGEYUKI KIJIMA, YASUNORI		
IPC分类号	H01L51/50 H01L33/08		
CPC分类号	H01L27/322		
优先权	2009243689 2009-10-22 JP		
其他公开文献	US8294143		
外部链接	Espacenet USPTO		

摘要(译)

提供一种确保良好显示性能并具有简单结构的显示单元。显示单元包括多层结构，其中分别具有发射青色光的多个有机发光装置的有机发光装置组和发射品红色光的多个有机发光装置和具有多个蓝色的滤色器组透射蓝光的滤光器和透射黄光的多个黄色滤光器依次层叠。在显示单元中，从有机发光器件组进入滤色器组的青色光和品红色光通过蓝色滤光器转换为蓝光，并且通过黄色滤光器分别转换为绿光和红光。因此，与有机发光器件组发射白光的情况相比，更容易进行颜色分离。

Chemical formula I

